%matplotlib inline
import pandas as pd
import socket
host = socket.getfqdn()
from core import load, zoom, calc, save,plots,monitor
#reload funcs after updating ./core/*.py
import importlib
importlib.reload(load)
importlib.reload(zoom)
importlib.reload(calc)
importlib.reload(save)
importlib.reload(plots)
importlib.reload(monitor)
<module 'core.monitor' from '/ccc/work/cont003/gen7420/talandel/TOOLS/monitor-sedna/notebook/core/monitor.py'>
If you submit the job with job scheduler; below are list of enviroment variable one can pass
local : if True run dask local cluster, if not true, put number of workers setted in the 'local' if no 'local ' given, local will be setted automatically to 'True'
%env ychunk='2', #%env tchunk='2'
controls chunk. 'False' sets no modification from original netcdf file's chunk.
ychunk=10 will group the original netcdf file to 10 by 10
tchunk=1 will chunk the time coordinate one by one
%env file_exp=
'file_exp': Which 'experiment' name is it? this corresopnds to intake catalog name without path and .yaml
#%env year=
for Validation, this correspoinds to path/year/month 's year for monitoring, this corresponids to 'date' having means do all files in the monitoring directory setting it as 0[0-9] &1[0-9]& [2-3][0-9], the job can be separated in three lots. For DELTA experiment, year corresponds to really 'year'
%env month=
for monitoring this corresponds to file path path-XIOS.{month}/
For DELTA experiment, year corresponds to really 'month'
proceed saving? True or False , Default is setted as True
proceed plotting? True or False , Default is setted as True
proceed computation? or just load computed result? True or False , Default is setted as True
save output file used for plotting
using kerchunked file -> False, not using kerhcunk -> True
name of control file to be used for computation/plots/save/ We have number of M_xxx.csv
Monitor.sh calls M_MLD_2D
and AWTD.sh, Fluxnet.sh, Siconc.sh, IceClim.sh, FWC_SSH.sh, Integrals.sh , Sections.sh
M_AWTMD
M_Fluxnet
M_Ice_quantities
M_IceClim M_IceConce M_IceThick
M_FWC_2D M_FWC_integrals M_FWC_SSH M_SSH_anomaly
M_Mean_temp_velo M_Mooring
M_Sectionx M_Sectiony
%%time
# 'savefig': Do we save output in html? or not. keep it true.
savefig=True
client,cluster,control,catalog_url,month,year,daskreport,outputpath = load.set_control(host)
!mkdir -p $outputpath
!mkdir -p $daskreport
client
local True using host= irene4439.c-irene.mg1.tgcc.ccc.cea.fr starting dask cluster on local= True workers 16 10000000000 rome local cluster starting This code is running on irene4439.c-irene.mg1.tgcc.ccc.cea.fr using SEDNA_DELTA_MONITOR file experiment, read from ../lib/SEDNA_DELTA_MONITOR.yaml on year= 2015 on month= 12 outputpath= ../results/SEDNA_DELTA_MONITOR/ daskreport= ../results/dask/7448987irene4439.c-irene.mg1.tgcc.ccc.cea.fr_SEDNA_DELTA_MONITOR_12M_Sectionx/ CPU times: user 364 ms, sys: 95 ms, total: 459 ms Wall time: 10.6 s
Client-e3eed84c-6f43-11ed-b932-080038b93499
Connection method: Cluster object | Cluster type: distributed.LocalCluster |
Dashboard: http://127.0.0.1:8787/status |
9ce9bc62
Dashboard: http://127.0.0.1:8787/status | Workers: 16 |
Total threads: 128 | Total memory: 221.88 GiB |
Status: running | Using processes: True |
Scheduler-a12e2484-17fb-4847-b3f5-d55d1bf2a7ac
Comm: tcp://127.0.0.1:41410 | Workers: 16 |
Dashboard: http://127.0.0.1:8787/status | Total threads: 128 |
Started: Just now | Total memory: 221.88 GiB |
Comm: tcp://127.0.0.1:39884 | Total threads: 8 |
Dashboard: http://127.0.0.1:34786/status | Memory: 13.87 GiB |
Nanny: tcp://127.0.0.1:38179 | |
Local directory: /tmp/dask-worker-space/worker-d7n19qyo |
Comm: tcp://127.0.0.1:45895 | Total threads: 8 |
Dashboard: http://127.0.0.1:42200/status | Memory: 13.87 GiB |
Nanny: tcp://127.0.0.1:45754 | |
Local directory: /tmp/dask-worker-space/worker-bdh58eaa |
Comm: tcp://127.0.0.1:42046 | Total threads: 8 |
Dashboard: http://127.0.0.1:45226/status | Memory: 13.87 GiB |
Nanny: tcp://127.0.0.1:43398 | |
Local directory: /tmp/dask-worker-space/worker-sxn49dkm |
Comm: tcp://127.0.0.1:44731 | Total threads: 8 |
Dashboard: http://127.0.0.1:33673/status | Memory: 13.87 GiB |
Nanny: tcp://127.0.0.1:35523 | |
Local directory: /tmp/dask-worker-space/worker-mcdp2yjk |
Comm: tcp://127.0.0.1:35876 | Total threads: 8 |
Dashboard: http://127.0.0.1:35103/status | Memory: 13.87 GiB |
Nanny: tcp://127.0.0.1:40647 | |
Local directory: /tmp/dask-worker-space/worker-edlcgelf |
Comm: tcp://127.0.0.1:45044 | Total threads: 8 |
Dashboard: http://127.0.0.1:34518/status | Memory: 13.87 GiB |
Nanny: tcp://127.0.0.1:32926 | |
Local directory: /tmp/dask-worker-space/worker-n5lhyedk |
Comm: tcp://127.0.0.1:44606 | Total threads: 8 |
Dashboard: http://127.0.0.1:38076/status | Memory: 13.87 GiB |
Nanny: tcp://127.0.0.1:45160 | |
Local directory: /tmp/dask-worker-space/worker-c8a8hvc1 |
Comm: tcp://127.0.0.1:42518 | Total threads: 8 |
Dashboard: http://127.0.0.1:40182/status | Memory: 13.87 GiB |
Nanny: tcp://127.0.0.1:32942 | |
Local directory: /tmp/dask-worker-space/worker-dhj0xf_r |
Comm: tcp://127.0.0.1:33764 | Total threads: 8 |
Dashboard: http://127.0.0.1:42223/status | Memory: 13.87 GiB |
Nanny: tcp://127.0.0.1:37043 | |
Local directory: /tmp/dask-worker-space/worker-74xulyt4 |
Comm: tcp://127.0.0.1:38981 | Total threads: 8 |
Dashboard: http://127.0.0.1:34071/status | Memory: 13.87 GiB |
Nanny: tcp://127.0.0.1:45331 | |
Local directory: /tmp/dask-worker-space/worker-5a3kxr90 |
Comm: tcp://127.0.0.1:34775 | Total threads: 8 |
Dashboard: http://127.0.0.1:36283/status | Memory: 13.87 GiB |
Nanny: tcp://127.0.0.1:36347 | |
Local directory: /tmp/dask-worker-space/worker-pjkq5k9h |
Comm: tcp://127.0.0.1:43237 | Total threads: 8 |
Dashboard: http://127.0.0.1:44294/status | Memory: 13.87 GiB |
Nanny: tcp://127.0.0.1:46585 | |
Local directory: /tmp/dask-worker-space/worker-qwhohr71 |
Comm: tcp://127.0.0.1:34687 | Total threads: 8 |
Dashboard: http://127.0.0.1:46110/status | Memory: 13.87 GiB |
Nanny: tcp://127.0.0.1:35115 | |
Local directory: /tmp/dask-worker-space/worker-59z9ubxw |
Comm: tcp://127.0.0.1:35023 | Total threads: 8 |
Dashboard: http://127.0.0.1:44254/status | Memory: 13.87 GiB |
Nanny: tcp://127.0.0.1:37561 | |
Local directory: /tmp/dask-worker-space/worker-k765_jmv |
Comm: tcp://127.0.0.1:43718 | Total threads: 8 |
Dashboard: http://127.0.0.1:36824/status | Memory: 13.87 GiB |
Nanny: tcp://127.0.0.1:40477 | |
Local directory: /tmp/dask-worker-space/worker-x8e6ul4w |
Comm: tcp://127.0.0.1:44804 | Total threads: 8 |
Dashboard: http://127.0.0.1:38104/status | Memory: 13.87 GiB |
Nanny: tcp://127.0.0.1:43438 | |
Local directory: /tmp/dask-worker-space/worker-y0apqxj2 |
df=load.controlfile(control)
#Take out 'later' tagged computations
#df=df[~df['Value'].str.contains('later')]
df
Value | Inputs | Equation | Zone | Plot | Colourmap | MinMax | Unit | Oldname | Unnamed: 10 | |
---|---|---|---|---|---|---|---|---|---|---|
Section | gridT.votemper,gridS.vosaline,gridU.vozocrtx,p... | data.chunk({'y':-1}).unify_chunks().persist() | BFGS | section | None | {'vosaline': (28,35), 'votemper': (-2,2), 'voz... | None | S-2 |
Each computation consists of
%%time
import os
calcswitch=os.environ.get('calc', 'True')
lazy=os.environ.get('lazy','False' )
loaddata=((df.Inputs != '').any())
print('calcswitch=',calcswitch,'df.Inputs != nothing',loaddata, 'lazy=',lazy)
data = load.datas(catalog_url,df.Inputs,month,year,daskreport,lazy=lazy) if ((calcswitch=='True' )*loaddata) else 0
data
calcswitch= False df.Inputs != nothing True lazy= False CPU times: user 335 µs, sys: 0 ns, total: 335 µs Wall time: 327 µs
0
%%time
monitor.auto(df,data,savefig,daskreport,outputpath,file_exp='SEDNA'
)
#calc= False #save= False #plot= True Value='Section' Zone='BFGS' Plot='section' cmap='None' clabel='None' clim= {'vosaline': (28, 35), 'votemper': (-2, 2), 'vozocrtx': (-0.05, 0.05)} outputpath='../results/SEDNA_DELTA_MONITOR/' nc_outputpath='../nc_results/SEDNA_DELTA_MONITOR/' filename='SEDNA_section_BFGS_Section' #3 no computing , loading starts data=save.load_data(plot=Plot,path=nc_outputpath,filename=filename) start loading data filename= ../nc_results/SEDNA_DELTA_MONITOR/SEDNA_section_BFGS_Section/t_*.nc dim t load computed data completed
<xarray.Dataset> Dimensions: (t: 365, z: 95, y: 2384) Coordinates: * t (t) object 2015-01-01 12:00:00 ... 2015-12-31 12:00:00 * y (y) int64 3494 3495 3496 3497 3498 ... 5909 5910 5911 5912 5913 x int64 ... * z (z) int64 1 2 3 4 5 6 7 8 9 10 ... 86 87 88 89 90 91 92 93 94 95 nav_lon (y) float32 dask.array<chunksize=(2384,), meta=np.ndarray> nav_lat (y) float32 dask.array<chunksize=(2384,), meta=np.ndarray> mask (z, y) bool dask.array<chunksize=(95, 2384), meta=np.ndarray> mask2d (y) bool dask.array<chunksize=(2384,), meta=np.ndarray> depth (z, y) float32 dask.array<chunksize=(95, 2384), meta=np.ndarray> Data variables: vosaline (t, z, y) float32 dask.array<chunksize=(1, 95, 2384), meta=np.ndarray> votemper (t, z, y) float32 dask.array<chunksize=(1, 95, 2384), meta=np.ndarray> vozocrtx (t, z, y) float32 dask.array<chunksize=(1, 95, 2384), meta=np.ndarray> Attributes: (12/26) CASE: DELTA CONFIG: SEDNA Conventions: CF-1.6 DOMAIN_dimensions_ids: [2 3] DOMAIN_halo_size_end: [0 0] DOMAIN_halo_size_start: [0 0] ... ... nj: 13 output_frequency: 1d start_date: 20090101 timeStamp: 2022-Jul-21 16:35:22 GMT title: ocean T grid variables uuid: 9aef3543-35d6-4da0-a58a-f2c75b69d3a7
#5 Plotting filename= plots.section(data,path=outputpath,filename=filename,save=savefig,cmap=cmap,clim=clim,clabel=clabel) ../results/SEDNA_DELTA_MONITOR/SEDNA_section_BFGS_Section_20150101-20151231.html starts plotting ../results/SEDNA_DELTA_MONITOR/SEDNA_section_BFGS_Section_20150101-20151231.html created
CPU times: user 4min 16s, sys: 30.9 s, total: 4min 47s Wall time: 8min 27s