In [1]:
%matplotlib inline
import pandas as pd
import socket
host = socket.getfqdn()

from core import  load, zoom, calc, save,plots,monitor
In [2]:
#reload funcs after updating ./core/*.py
import importlib
importlib.reload(load)
importlib.reload(zoom)
importlib.reload(calc)
importlib.reload(save)
importlib.reload(plots)
importlib.reload(monitor)
Out[2]:
<module 'core.monitor' from '/ccc/work/cont003/gen7420/odakatin/monitor-sedna/notebook/core/monitor.py'>
In [3]:
# 'month':  = 'JOBID' almost month but not really, 

# If you submit the job with job scheduler, above

#below are list of enviroment variable one can pass
#%env local='2"
# local : if True  run dask local cluster, if not true, put number of workers
# setted in the 'local'
# if no 'local ' given, local will be setted automatically to 'True'
#%env ychunk='2'
#%env tchunk='2'
# controls chunk. 'False' sets no modification from original netcdf file's chunk.  
# ychunk=10 will group the original netcdf file to 10 by 10 
# tchunk=1 will chunk the time coordinate one by one
#%env control=FWC_SSH 
# name of control file to be used for computation/plots/save/ 
#%env file_exp= 
# 'file_exp': Which 'experiment' name is it? 
#.    this corresopnds to intake catalog name without path and .yaml
#%env year=
# for Validation, this correspoinds to path/year/month 's year
# for monitoring, this corresponids to 'date'  having * means do all files in the monitoring directory
# setting it as *0[0-9] &*1[0-9]& *[2-3][0-9], the job can be separated in three lots.
#%env month=
# for monitoring  this corresponds to file path path-XIOS.{month}/
#
#%env save=   proceed saving?   True or False  , Default is setted as True 
#%env plot=   proceed plotting?  True or False , Default is setted as True 
#%env calc=   proceed computation? or just load computed result? True or False , Default is setted as True 
#%env save=False
#%env lazy=False
In [4]:
%%time
# 'savefig': Do we save output in html? or not. keep it true. 
savefig=True
client,cluster,control,catalog_url,month,year,daskreport,outputpath = load.set_control(host)
!mkdir -p $outputpath
!mkdir -p $daskreport
client
local True
using host= irene4398.c-irene.mg1.tgcc.ccc.cea.fr starting dask cluster on local= True workers 16
10000000000
False
rome local cluster starting
This code is running on  irene4398.c-irene.mg1.tgcc.ccc.cea.fr using  SEDNA_DELTA_MONITOR file experiment, read from  ../lib/SEDNA_DELTA_MONITOR.yaml  on year= 2012  on month= 01  outputpath= ../results/SEDNA_DELTA_MONITOR/ daskreport= ../results/dask/6413731irene4398.c-irene.mg1.tgcc.ccc.cea.fr_SEDNA_DELTA_MONITOR_01M_AWTMD/
CPU times: user 498 ms, sys: 129 ms, total: 626 ms
Wall time: 19.9 s
Out[4]:

Client

Client-6664e538-1343-11ed-878a-080038b931c3

Connection method: Cluster object Cluster type: distributed.LocalCluster
Dashboard: http://127.0.0.1:8787/status

Cluster Info

LocalCluster

67075be3

Dashboard: http://127.0.0.1:8787/status Workers: 16
Total threads: 128 Total memory: 251.06 GiB
Status: running Using processes: True

Scheduler Info

Scheduler

Scheduler-42333fd6-8e6e-441f-9693-fdb4665a03bf

Comm: tcp://127.0.0.1:45743 Workers: 16
Dashboard: http://127.0.0.1:8787/status Total threads: 128
Started: Just now Total memory: 251.06 GiB

Workers

Worker: 0

Comm: tcp://127.0.0.1:34010 Total threads: 8
Dashboard: http://127.0.0.1:40356/status Memory: 15.69 GiB
Nanny: tcp://127.0.0.1:33210
Local directory: /tmp/dask-worker-space/worker-3334v3m3

Worker: 1

Comm: tcp://127.0.0.1:44355 Total threads: 8
Dashboard: http://127.0.0.1:37306/status Memory: 15.69 GiB
Nanny: tcp://127.0.0.1:34260
Local directory: /tmp/dask-worker-space/worker-5nan2251

Worker: 2

Comm: tcp://127.0.0.1:34238 Total threads: 8
Dashboard: http://127.0.0.1:44670/status Memory: 15.69 GiB
Nanny: tcp://127.0.0.1:37189
Local directory: /tmp/dask-worker-space/worker-rd8vn3a3

Worker: 3

Comm: tcp://127.0.0.1:41228 Total threads: 8
Dashboard: http://127.0.0.1:34949/status Memory: 15.69 GiB
Nanny: tcp://127.0.0.1:35821
Local directory: /tmp/dask-worker-space/worker-_bpfvaiv

Worker: 4

Comm: tcp://127.0.0.1:42375 Total threads: 8
Dashboard: http://127.0.0.1:37152/status Memory: 15.69 GiB
Nanny: tcp://127.0.0.1:46375
Local directory: /tmp/dask-worker-space/worker-5dequr7r

Worker: 5

Comm: tcp://127.0.0.1:40838 Total threads: 8
Dashboard: http://127.0.0.1:36156/status Memory: 15.69 GiB
Nanny: tcp://127.0.0.1:33277
Local directory: /tmp/dask-worker-space/worker-ys9n4dlv

Worker: 6

Comm: tcp://127.0.0.1:35399 Total threads: 8
Dashboard: http://127.0.0.1:40675/status Memory: 15.69 GiB
Nanny: tcp://127.0.0.1:39539
Local directory: /tmp/dask-worker-space/worker-mg0o1n4g

Worker: 7

Comm: tcp://127.0.0.1:42812 Total threads: 8
Dashboard: http://127.0.0.1:39483/status Memory: 15.69 GiB
Nanny: tcp://127.0.0.1:38055
Local directory: /tmp/dask-worker-space/worker-eca507b2

Worker: 8

Comm: tcp://127.0.0.1:37038 Total threads: 8
Dashboard: http://127.0.0.1:44412/status Memory: 15.69 GiB
Nanny: tcp://127.0.0.1:41364
Local directory: /tmp/dask-worker-space/worker-z59w_0nv

Worker: 9

Comm: tcp://127.0.0.1:45644 Total threads: 8
Dashboard: http://127.0.0.1:38497/status Memory: 15.69 GiB
Nanny: tcp://127.0.0.1:42935
Local directory: /tmp/dask-worker-space/worker-9f0s52fd

Worker: 10

Comm: tcp://127.0.0.1:41481 Total threads: 8
Dashboard: http://127.0.0.1:36995/status Memory: 15.69 GiB
Nanny: tcp://127.0.0.1:45744
Local directory: /tmp/dask-worker-space/worker-exzzuo0r

Worker: 11

Comm: tcp://127.0.0.1:33941 Total threads: 8
Dashboard: http://127.0.0.1:39858/status Memory: 15.69 GiB
Nanny: tcp://127.0.0.1:45440
Local directory: /tmp/dask-worker-space/worker-m3p5slox

Worker: 12

Comm: tcp://127.0.0.1:38831 Total threads: 8
Dashboard: http://127.0.0.1:36949/status Memory: 15.69 GiB
Nanny: tcp://127.0.0.1:41140
Local directory: /tmp/dask-worker-space/worker-4jl2zk6l

Worker: 13

Comm: tcp://127.0.0.1:33352 Total threads: 8
Dashboard: http://127.0.0.1:44401/status Memory: 15.69 GiB
Nanny: tcp://127.0.0.1:42658
Local directory: /tmp/dask-worker-space/worker-u4qqnrkr

Worker: 14

Comm: tcp://127.0.0.1:38952 Total threads: 8
Dashboard: http://127.0.0.1:36536/status Memory: 15.69 GiB
Nanny: tcp://127.0.0.1:33760
Local directory: /tmp/dask-worker-space/worker-og7qvyz2

Worker: 15

Comm: tcp://127.0.0.1:42624 Total threads: 8
Dashboard: http://127.0.0.1:45291/status Memory: 15.69 GiB
Nanny: tcp://127.0.0.1:39992
Local directory: /tmp/dask-worker-space/worker-xv3fgw9_

read plotting information from a csv file¶

In [5]:
df=load.controlfile(control)
#Take out 'later' tagged computations
#df=df[~df['Value'].str.contains('later')]
df
Out[5]:
Value Inputs Equation Zone Plot Colourmap MinMax Unit Oldname Unnamed: 10
AW_maxtemp_depth gridT.votemper,gridS.vosaline,param.mask,param... calc.AWTD4(data) ALL AWTD_map jet (0,800) m M-5

Computation starts here¶

Each computation consists of

  1. Load NEMO data set
  2. Zoom data set
  3. Compute (or load computed data set)
  4. Save
  5. Plot
  6. Close
In [6]:
%%time
import os
calcswitch=os.environ.get('calc', 'True') 
lazy=os.environ.get('lazy','False' )
loaddata=((df.Inputs != '').any()) 
print('calcswitch=',calcswitch,'df.Inputs != nothing',loaddata, 'lazy=',lazy)
data = load.datas(catalog_url,df.Inputs,month,year,daskreport,lazy=lazy) if ((calcswitch=='True' )*loaddata) else 0 
data
calcswitch= False df.Inputs != nothing True lazy= False
CPU times: user 394 µs, sys: 50 µs, total: 444 µs
Wall time: 422 µs
Out[6]:
0
In [7]:
%%time
monitor.auto(df,data,savefig,daskreport,outputpath,file_exp='SEDNA'
            )
#calc= False
#save= False
#plot= True
---------------------------------------------------------------------------
AttributeError                            Traceback (most recent call last)
File <timed eval>:1, in <module>

File /ccc/work/cont003/gen7420/odakatin/monitor-sedna/notebook/core/monitor.py:26, in auto(df, val, savefig, daskreport, outputpath, file_exp)
     23 print('#plot=',plotswitch )  
     24 for step in df.itertuples():
     25 # 1. Create data set
---> 26     optimize_dataset(val)
     27     data=val
     28     Value=step.Value

File /ccc/work/cont003/gen7420/odakatin/monitor-sedna/notebook/core/monitor.py:100, in optimize_dataset(ds)
     98 def optimize_dataset(ds):
     99     import dask
--> 100     for varname, da in ds.data_vars.items():
    101         #print(varname)
    102         da=da.data
    103         (da,)=dask.optimize(da)

AttributeError: 'int' object has no attribute 'data_vars'