%matplotlib inline
import pandas as pd
import socket
host = socket.getfqdn()
from core import load, zoom, calc, save,plots,monitor
#reload funcs after updating ./core/*.py
import importlib
importlib.reload(load)
importlib.reload(zoom)
importlib.reload(calc)
importlib.reload(save)
importlib.reload(plots)
importlib.reload(monitor)
<module 'core.monitor' from '/ccc/work/cont003/gen7420/odakatin/monitor-sedna/notebook/core/monitor.py'>
below are list of enviroment variable one can pass
local : if True run dask local cluster, if not true, put number of workers setted in the 'local' if no 'local ' given, local will be setted automatically to 'True'
#
AWTD.sh M_AWTMD
Ice_quant_flux.sh M_Fluxnet M_Ice_quantities
FWC_SSH.sh M_FWC_2D M_FWC_integrals M_FWC_SSH M_SSH_anomaly
IceClim.sh M_IceClim M_IceConce M_IceThick
M_Mean_temp_velo M_MLD_2D M_Mooring M_Sectionx M_Sectiony
%%time
# 'savefig': Do we save output in html? or not. keep it true.
savefig=True
client,cluster,control,catalog_url,month,year,daskreport,outputpath = load.set_control(host)
!mkdir -p $outputpath
!mkdir -p $daskreport
client
local True using host= irene5760.c-irene.mg1.tgcc.ccc.cea.fr starting dask cluster on local= True workers 16 10000000000 False rome local cluster starting This code is running on irene5760.c-irene.mg1.tgcc.ccc.cea.fr using SEDNA_DELTA_MONITOR file experiment, read from ../lib/SEDNA_DELTA_MONITOR.yaml on year= 2012 on month= 02 outputpath= ../results/SEDNA_DELTA_MONITOR/ daskreport= ../results/dask/6417345irene5760.c-irene.mg1.tgcc.ccc.cea.fr_SEDNA_DELTA_MONITOR_02M_AWTMD/ CPU times: user 551 ms, sys: 123 ms, total: 674 ms Wall time: 21 s
Client-e95f7a60-13c4-11ed-980b-080038b94703
Connection method: Cluster object | Cluster type: distributed.LocalCluster |
Dashboard: http://127.0.0.1:8787/status |
16cfee0f
Dashboard: http://127.0.0.1:8787/status | Workers: 16 |
Total threads: 128 | Total memory: 251.06 GiB |
Status: running | Using processes: True |
Scheduler-eb402627-a971-4dab-8523-0b14f15ebda6
Comm: tcp://127.0.0.1:41593 | Workers: 16 |
Dashboard: http://127.0.0.1:8787/status | Total threads: 128 |
Started: Just now | Total memory: 251.06 GiB |
Comm: tcp://127.0.0.1:37201 | Total threads: 8 |
Dashboard: http://127.0.0.1:39195/status | Memory: 15.69 GiB |
Nanny: tcp://127.0.0.1:46609 | |
Local directory: /tmp/dask-worker-space/worker-v8he8570 |
Comm: tcp://127.0.0.1:43449 | Total threads: 8 |
Dashboard: http://127.0.0.1:44524/status | Memory: 15.69 GiB |
Nanny: tcp://127.0.0.1:38145 | |
Local directory: /tmp/dask-worker-space/worker-yconbkbw |
Comm: tcp://127.0.0.1:37204 | Total threads: 8 |
Dashboard: http://127.0.0.1:43784/status | Memory: 15.69 GiB |
Nanny: tcp://127.0.0.1:45446 | |
Local directory: /tmp/dask-worker-space/worker-xcon70kf |
Comm: tcp://127.0.0.1:36954 | Total threads: 8 |
Dashboard: http://127.0.0.1:38291/status | Memory: 15.69 GiB |
Nanny: tcp://127.0.0.1:37406 | |
Local directory: /tmp/dask-worker-space/worker-9k7xjy8a |
Comm: tcp://127.0.0.1:39981 | Total threads: 8 |
Dashboard: http://127.0.0.1:42248/status | Memory: 15.69 GiB |
Nanny: tcp://127.0.0.1:44406 | |
Local directory: /tmp/dask-worker-space/worker-fkj4sd2h |
Comm: tcp://127.0.0.1:37000 | Total threads: 8 |
Dashboard: http://127.0.0.1:44612/status | Memory: 15.69 GiB |
Nanny: tcp://127.0.0.1:44509 | |
Local directory: /tmp/dask-worker-space/worker-c4otuop_ |
Comm: tcp://127.0.0.1:46723 | Total threads: 8 |
Dashboard: http://127.0.0.1:41721/status | Memory: 15.69 GiB |
Nanny: tcp://127.0.0.1:45441 | |
Local directory: /tmp/dask-worker-space/worker-us38neek |
Comm: tcp://127.0.0.1:38896 | Total threads: 8 |
Dashboard: http://127.0.0.1:42617/status | Memory: 15.69 GiB |
Nanny: tcp://127.0.0.1:46317 | |
Local directory: /tmp/dask-worker-space/worker-ujtoofxm |
Comm: tcp://127.0.0.1:35753 | Total threads: 8 |
Dashboard: http://127.0.0.1:44062/status | Memory: 15.69 GiB |
Nanny: tcp://127.0.0.1:46241 | |
Local directory: /tmp/dask-worker-space/worker-fu5oyo77 |
Comm: tcp://127.0.0.1:39876 | Total threads: 8 |
Dashboard: http://127.0.0.1:43173/status | Memory: 15.69 GiB |
Nanny: tcp://127.0.0.1:45232 | |
Local directory: /tmp/dask-worker-space/worker-3jw5f_ae |
Comm: tcp://127.0.0.1:41591 | Total threads: 8 |
Dashboard: http://127.0.0.1:43600/status | Memory: 15.69 GiB |
Nanny: tcp://127.0.0.1:40295 | |
Local directory: /tmp/dask-worker-space/worker-_ej58v5s |
Comm: tcp://127.0.0.1:45612 | Total threads: 8 |
Dashboard: http://127.0.0.1:44003/status | Memory: 15.69 GiB |
Nanny: tcp://127.0.0.1:38358 | |
Local directory: /tmp/dask-worker-space/worker-npas1g2x |
Comm: tcp://127.0.0.1:41437 | Total threads: 8 |
Dashboard: http://127.0.0.1:44695/status | Memory: 15.69 GiB |
Nanny: tcp://127.0.0.1:37607 | |
Local directory: /tmp/dask-worker-space/worker-q1he6uep |
Comm: tcp://127.0.0.1:37950 | Total threads: 8 |
Dashboard: http://127.0.0.1:34089/status | Memory: 15.69 GiB |
Nanny: tcp://127.0.0.1:44888 | |
Local directory: /tmp/dask-worker-space/worker-5jhk27lb |
Comm: tcp://127.0.0.1:34179 | Total threads: 8 |
Dashboard: http://127.0.0.1:35322/status | Memory: 15.69 GiB |
Nanny: tcp://127.0.0.1:35861 | |
Local directory: /tmp/dask-worker-space/worker-pqj64x9j |
Comm: tcp://127.0.0.1:40153 | Total threads: 8 |
Dashboard: http://127.0.0.1:41832/status | Memory: 15.69 GiB |
Nanny: tcp://127.0.0.1:40525 | |
Local directory: /tmp/dask-worker-space/worker-mdcg4c1l |
df=load.controlfile(control)
#Take out 'later' tagged computations
#df=df[~df['Value'].str.contains('later')]
df
Value | Inputs | Equation | Zone | Plot | Colourmap | MinMax | Unit | Oldname | Unnamed: 10 | |
---|---|---|---|---|---|---|---|---|---|---|
AW_maxtemp_depth | gridT.votemper,gridS.vosaline,param.mask,param... | calc.AWTD4(data) | ALL | AWTD_map | jet | (0,800) | m | M-5 |
Each computation consists of
%%time
import os
calcswitch=os.environ.get('calc', 'True')
lazy=os.environ.get('lazy','False' )
loaddata=((df.Inputs != '').any())
print('calcswitch=',calcswitch,'df.Inputs != nothing',loaddata, 'lazy=',lazy)
data = load.datas(catalog_url,df.Inputs,month,year,daskreport,lazy=lazy) if ((calcswitch=='True' )*loaddata) else 0
data
calcswitch= True df.Inputs != nothing True lazy= False ../lib/SEDNA_DELTA_MONITOR.yaml using param_xios reading ../lib/SEDNA_DELTA_MONITOR.yaml using param_xios reading <bound method DataSourceBase.describe of sources: param_xios: args: combine: nested concat_dim: y urlpath: /ccc/work/cont003/gen7420/odakatin/CONFIGS/SEDNA/SEDNA-I/SEDNA_Domain_cfg_Tgt_20210423_tsh10m_L1/param_f32/x_*.nc xarray_kwargs: compat: override coords: minimal data_vars: minimal parallel: true description: SEDNA NEMO parameters from MPI output nav_lon lat fails driver: intake_xarray.netcdf.NetCDFSource metadata: catalog_dir: /ccc/work/cont003/gen7420/odakatin/monitor-sedna/notebook/../lib/ > {'name': 'param_xios', 'container': 'xarray', 'plugin': ['netcdf'], 'driver': ['netcdf'], 'description': 'SEDNA NEMO parameters from MPI output nav_lon lat fails', 'direct_access': 'forbid', 'user_parameters': [{'name': 'path', 'description': 'file coordinate', 'type': 'str', 'default': '/ccc/work/cont003/gen7420/odakatin/CONFIGS/SEDNA/MESH/SEDNA_mesh_mask_Tgt_20210423_tsh10m_L1/param'}], 'metadata': {}, 'args': {'urlpath': '/ccc/work/cont003/gen7420/odakatin/CONFIGS/SEDNA/SEDNA-I/SEDNA_Domain_cfg_Tgt_20210423_tsh10m_L1/param_f32/x_*.nc', 'combine': 'nested', 'concat_dim': 'y'}} 0 read gridS ['vosaline'] lazy= False using load_data_xios_kerchunk reading gridS using load_data_xios_kerchunk reading <bound method DataSourceBase.describe of sources: data_xios_kerchunk: args: consolidated: false storage_options: fo: file:////ccc/cont003/home/ra5563/ra5563/catalogue/DELTA/201202/gridS_0[0-5][0-9][0-9].json target_protocol: file urlpath: reference:// description: CREG025 NEMO outputs from different xios server in kerchunk format driver: intake_xarray.xzarr.ZarrSource metadata: catalog_dir: /ccc/work/cont003/gen7420/odakatin/monitor-sedna/notebook/../lib/ > took 43.54166221618652 seconds 0 merging gridS ['vosaline'] 1 read gridT ['votemper'] lazy= False using load_data_xios_kerchunk reading gridT using load_data_xios_kerchunk reading <bound method DataSourceBase.describe of sources: data_xios_kerchunk: args: consolidated: false storage_options: fo: file:////ccc/cont003/home/ra5563/ra5563/catalogue/DELTA/201202/gridT_0[0-5][0-9][0-9].json target_protocol: file urlpath: reference:// description: CREG025 NEMO outputs from different xios server in kerchunk format driver: intake_xarray.xzarr.ZarrSource metadata: catalog_dir: /ccc/work/cont003/gen7420/odakatin/monitor-sedna/notebook/../lib/ > took 39.78523826599121 seconds 1 merging gridT ['votemper'] took 1.4800565242767334 seconds param depth will be included in data param nav_lat will be included in data param nav_lon will be included in data param mask will be included in data param mask2d will be included in data CPU times: user 37.7 s, sys: 5.74 s, total: 43.4 s Wall time: 1min 48s
<xarray.Dataset> Dimensions: (t: 28, z: 150, y: 6540, x: 6560) Coordinates: time_centered (t) object dask.array<chunksize=(1,), meta=np.ndarray> * t (t) object 2012-02-01 12:00:00 ... 2012-02-28 12:00:00 * y (y) int64 1 2 3 4 5 6 7 ... 6535 6536 6537 6538 6539 6540 * x (x) int64 1 2 3 4 5 6 7 ... 6555 6556 6557 6558 6559 6560 * z (z) int64 1 2 3 4 5 6 7 8 ... 143 144 145 146 147 148 149 150 depth (z, y, x) float32 dask.array<chunksize=(150, 13, 6560), meta=np.ndarray> nav_lat (y, x) float32 dask.array<chunksize=(13, 6560), meta=np.ndarray> nav_lon (y, x) float32 dask.array<chunksize=(13, 6560), meta=np.ndarray> mask (z, y, x) bool dask.array<chunksize=(150, 13, 6560), meta=np.ndarray> mask2d (y, x) bool dask.array<chunksize=(13, 6560), meta=np.ndarray> Data variables: vosaline (t, z, y, x) float32 dask.array<chunksize=(1, 150, 13, 6560), meta=np.ndarray> votemper (t, z, y, x) float32 dask.array<chunksize=(1, 150, 13, 6560), meta=np.ndarray> Attributes: (12/26) CASE: DELTA CONFIG: SEDNA Conventions: CF-1.6 DOMAIN_dimensions_ids: [2, 3] DOMAIN_halo_size_end: [0, 0] DOMAIN_halo_size_start: [0, 0] ... ... nj: 13 output_frequency: 1d start_date: 20090101 timeStamp: 2022-Jan-18 16:51:26 GMT title: ocean T grid variables uuid: 6ca3a74a-269a-44e2-91db-2aea875dbf84
%%time
monitor.auto(df,data,savefig,daskreport,outputpath,file_exp='SEDNA'
)
#calc= True #save= True #plot= False Value='AW_maxtemp_depth' Zone='ALL' Plot='AWTD_map' cmap='jet' clabel='m' clim= (0, 800) outputpath='../results/SEDNA_DELTA_MONITOR/' nc_outputpath='../nc_results/SEDNA_DELTA_MONITOR/' filename='SEDNA_AWTD_map_ALL_AW_maxtemp_depth' data=monitor.optimize_dataset(data) #3 Start computing data= calc.AWTD4(data) monitor.optimize_dataset(data) add optimise here once otimise can recognise
<xarray.Dataset> Dimensions: (t: 28, y: 6540, x: 6560) Coordinates: time_centered (t) object dask.array<chunksize=(1,), meta=np.ndarray> * t (t) object 2012-02-01 12:00:00 ... 2012-02-28 12:00:00 * y (y) int64 1 2 3 4 5 6 7 ... 6535 6536 6537 6538 6539 6540 * x (x) int64 1 2 3 4 5 6 7 ... 6555 6556 6557 6558 6559 6560 nav_lat (y, x) float32 dask.array<chunksize=(13, 6560), meta=np.ndarray> nav_lon (y, x) float32 dask.array<chunksize=(13, 6560), meta=np.ndarray> mask2d (y, x) bool dask.array<chunksize=(13, 6560), meta=np.ndarray> Data variables: AWT (t, y, x) float32 dask.array<chunksize=(1, 13, 6560), meta=np.ndarray> AWD (t, y, x) float32 dask.array<chunksize=(1, 13, 6560), meta=np.ndarray>
#4 Saving SEDNA_AWTD_map_ALL_AW_maxtemp_depth data=save.datas(data,plot=Plot,path=nc_outputpath,filename=filename) start saving data saving data in a file t (1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 slice(0, 1, None)
/ccc/cont003/home/ra5563/ra5563/monitor/lib/python3.10/site-packages/dask/array/reductions.py:608: RuntimeWarning: All-NaN slice encountered return np.nanmax(x_chunk, axis=axis, keepdims=keepdims) /ccc/cont003/home/ra5563/ra5563/monitor/lib/python3.10/site-packages/dask/array/reductions.py:608: RuntimeWarning: All-NaN slice encountered return np.nanmax(x_chunk, axis=axis, keepdims=keepdims) /ccc/cont003/home/ra5563/ra5563/monitor/lib/python3.10/site-packages/dask/array/reductions.py:608: RuntimeWarning: All-NaN slice encountered return np.nanmax(x_chunk, axis=axis, keepdims=keepdims) /ccc/cont003/home/ra5563/ra5563/monitor/lib/python3.10/site-packages/dask/array/reductions.py:608: RuntimeWarning: All-NaN slice encountered return np.nanmax(x_chunk, axis=axis, keepdims=keepdims) /ccc/cont003/home/ra5563/ra5563/monitor/lib/python3.10/site-packages/dask/array/reductions.py:608: RuntimeWarning: All-NaN slice encountered return np.nanmax(x_chunk, axis=axis, keepdims=keepdims) /ccc/cont003/home/ra5563/ra5563/monitor/lib/python3.10/site-packages/dask/array/reductions.py:608: RuntimeWarning: All-NaN slice encountered return np.nanmax(x_chunk, axis=axis, keepdims=keepdims) /ccc/cont003/home/ra5563/ra5563/monitor/lib/python3.10/site-packages/dask/array/reductions.py:608: RuntimeWarning: All-NaN slice encountered return np.nanmax(x_chunk, axis=axis, keepdims=keepdims) /ccc/cont003/home/ra5563/ra5563/monitor/lib/python3.10/site-packages/dask/array/reductions.py:608: RuntimeWarning: All-NaN slice encountered return np.nanmax(x_chunk, axis=axis, keepdims=keepdims) /ccc/cont003/home/ra5563/ra5563/monitor/lib/python3.10/site-packages/dask/array/reductions.py:608: RuntimeWarning: All-NaN slice encountered return np.nanmax(x_chunk, axis=axis, keepdims=keepdims) /ccc/cont003/home/ra5563/ra5563/monitor/lib/python3.10/site-packages/dask/array/reductions.py:608: RuntimeWarning: All-NaN slice encountered return np.nanmax(x_chunk, axis=axis, keepdims=keepdims) /ccc/cont003/home/ra5563/ra5563/monitor/lib/python3.10/site-packages/dask/array/reductions.py:608: RuntimeWarning: All-NaN slice encountered return np.nanmax(x_chunk, axis=axis, keepdims=keepdims) /ccc/cont003/home/ra5563/ra5563/monitor/lib/python3.10/site-packages/dask/array/reductions.py:608: RuntimeWarning: All-NaN slice encountered return np.nanmax(x_chunk, axis=axis, keepdims=keepdims) /ccc/cont003/home/ra5563/ra5563/monitor/lib/python3.10/site-packages/dask/array/reductions.py:608: RuntimeWarning: All-NaN slice encountered return np.nanmax(x_chunk, axis=axis, keepdims=keepdims) /ccc/cont003/home/ra5563/ra5563/monitor/lib/python3.10/site-packages/dask/array/reductions.py:608: RuntimeWarning: All-NaN slice encountered return np.nanmax(x_chunk, axis=axis, keepdims=keepdims) /ccc/cont003/home/ra5563/ra5563/monitor/lib/python3.10/site-packages/dask/array/reductions.py:608: RuntimeWarning: All-NaN slice encountered return np.nanmax(x_chunk, axis=axis, keepdims=keepdims)
slice(1, 2, None)
/ccc/cont003/home/ra5563/ra5563/monitor/lib/python3.10/site-packages/dask/array/reductions.py:608: RuntimeWarning: All-NaN slice encountered return np.nanmax(x_chunk, axis=axis, keepdims=keepdims) /ccc/cont003/home/ra5563/ra5563/monitor/lib/python3.10/site-packages/dask/array/reductions.py:608: RuntimeWarning: All-NaN slice encountered return np.nanmax(x_chunk, axis=axis, keepdims=keepdims) /ccc/cont003/home/ra5563/ra5563/monitor/lib/python3.10/site-packages/dask/array/reductions.py:608: RuntimeWarning: All-NaN slice encountered return np.nanmax(x_chunk, axis=axis, keepdims=keepdims) /ccc/cont003/home/ra5563/ra5563/monitor/lib/python3.10/site-packages/dask/array/reductions.py:608: RuntimeWarning: All-NaN slice encountered return np.nanmax(x_chunk, axis=axis, keepdims=keepdims) /ccc/cont003/home/ra5563/ra5563/monitor/lib/python3.10/site-packages/dask/array/reductions.py:608: RuntimeWarning: All-NaN slice encountered return np.nanmax(x_chunk, axis=axis, keepdims=keepdims) /ccc/cont003/home/ra5563/ra5563/monitor/lib/python3.10/site-packages/dask/array/reductions.py:608: RuntimeWarning: All-NaN slice encountered return np.nanmax(x_chunk, axis=axis, keepdims=keepdims)
slice(2, 3, None)
/ccc/cont003/home/ra5563/ra5563/monitor/lib/python3.10/site-packages/dask/array/reductions.py:608: RuntimeWarning: All-NaN slice encountered return np.nanmax(x_chunk, axis=axis, keepdims=keepdims) /ccc/cont003/home/ra5563/ra5563/monitor/lib/python3.10/site-packages/dask/array/reductions.py:608: RuntimeWarning: All-NaN slice encountered return np.nanmax(x_chunk, axis=axis, keepdims=keepdims) /ccc/cont003/home/ra5563/ra5563/monitor/lib/python3.10/site-packages/dask/array/reductions.py:608: RuntimeWarning: All-NaN slice encountered return np.nanmax(x_chunk, axis=axis, keepdims=keepdims)
slice(3, 4, None) slice(4, 5, None) slice(5, 6, None) slice(6, 7, None) slice(7, 8, None) slice(8, 9, None) slice(9, 10, None) slice(10, 11, None) slice(11, 12, None) slice(12, 13, None) slice(13, 14, None) slice(14, 15, None)
2022-08-04 09:24:05,036 - distributed.utils_perf - WARNING - full garbage collections took 10% CPU time recently (threshold: 10%) 2022-08-04 09:24:06,875 - distributed.utils_perf - WARNING - full garbage collections took 10% CPU time recently (threshold: 10%)
slice(15, 16, None)
2022-08-04 09:24:34,756 - distributed.utils_perf - WARNING - full garbage collections took 10% CPU time recently (threshold: 10%) 2022-08-04 09:24:37,464 - distributed.utils_perf - WARNING - full garbage collections took 10% CPU time recently (threshold: 10%) 2022-08-04 09:24:42,208 - distributed.utils_perf - WARNING - full garbage collections took 11% CPU time recently (threshold: 10%)
slice(16, 17, None)
2022-08-04 09:25:06,966 - distributed.utils_perf - WARNING - full garbage collections took 11% CPU time recently (threshold: 10%) 2022-08-04 09:25:09,554 - distributed.utils_perf - WARNING - full garbage collections took 10% CPU time recently (threshold: 10%) 2022-08-04 09:25:21,638 - distributed.utils_perf - WARNING - full garbage collections took 10% CPU time recently (threshold: 10%)
slice(17, 18, None)
2022-08-04 09:25:41,222 - distributed.utils_perf - WARNING - full garbage collections took 10% CPU time recently (threshold: 10%) 2022-08-04 09:25:44,605 - distributed.utils_perf - WARNING - full garbage collections took 10% CPU time recently (threshold: 10%) 2022-08-04 09:26:06,196 - distributed.utils_perf - WARNING - full garbage collections took 10% CPU time recently (threshold: 10%)
slice(18, 19, None)
2022-08-04 09:26:15,020 - distributed.utils_perf - WARNING - full garbage collections took 10% CPU time recently (threshold: 10%) 2022-08-04 09:26:17,449 - distributed.utils_perf - WARNING - full garbage collections took 10% CPU time recently (threshold: 10%)
slice(19, 20, None)
2022-08-04 09:26:41,071 - distributed.utils_perf - WARNING - full garbage collections took 10% CPU time recently (threshold: 10%) 2022-08-04 09:26:47,995 - distributed.utils_perf - WARNING - full garbage collections took 10% CPU time recently (threshold: 10%) 2022-08-04 09:26:50,516 - distributed.utils_perf - WARNING - full garbage collections took 10% CPU time recently (threshold: 10%)
slice(20, 21, None)
2022-08-04 09:27:14,031 - distributed.utils_perf - WARNING - full garbage collections took 10% CPU time recently (threshold: 10%) 2022-08-04 09:27:21,320 - distributed.utils_perf - WARNING - full garbage collections took 10% CPU time recently (threshold: 10%) 2022-08-04 09:27:23,281 - distributed.utils_perf - WARNING - full garbage collections took 10% CPU time recently (threshold: 10%)
slice(21, 22, None)
2022-08-04 09:27:50,639 - distributed.utils_perf - WARNING - full garbage collections took 10% CPU time recently (threshold: 10%) 2022-08-04 09:27:53,571 - distributed.utils_perf - WARNING - full garbage collections took 10% CPU time recently (threshold: 10%) 2022-08-04 09:27:54,946 - distributed.utils_perf - WARNING - full garbage collections took 11% CPU time recently (threshold: 10%)
slice(22, 23, None)
2022-08-04 09:28:22,493 - distributed.utils_perf - WARNING - full garbage collections took 11% CPU time recently (threshold: 10%) 2022-08-04 09:28:25,276 - distributed.utils_perf - WARNING - full garbage collections took 10% CPU time recently (threshold: 10%) 2022-08-04 09:28:26,874 - distributed.utils_perf - WARNING - full garbage collections took 11% CPU time recently (threshold: 10%)
slice(23, 24, None)
2022-08-04 09:28:53,955 - distributed.utils_perf - WARNING - full garbage collections took 11% CPU time recently (threshold: 10%) 2022-08-04 09:28:56,618 - distributed.utils_perf - WARNING - full garbage collections took 10% CPU time recently (threshold: 10%) 2022-08-04 09:29:07,475 - distributed.utils_perf - WARNING - full garbage collections took 11% CPU time recently (threshold: 10%)
slice(24, 25, None)
2022-08-04 09:29:26,933 - distributed.utils_perf - WARNING - full garbage collections took 11% CPU time recently (threshold: 10%) 2022-08-04 09:29:29,652 - distributed.utils_perf - WARNING - full garbage collections took 10% CPU time recently (threshold: 10%) 2022-08-04 09:29:59,349 - distributed.utils_perf - WARNING - full garbage collections took 10% CPU time recently (threshold: 10%)
slice(25, 26, None)
2022-08-04 09:30:08,041 - distributed.utils_perf - WARNING - full garbage collections took 10% CPU time recently (threshold: 10%) 2022-08-04 09:30:10,586 - distributed.utils_perf - WARNING - full garbage collections took 11% CPU time recently (threshold: 10%)
slice(26, 27, None)
2022-08-04 09:30:33,973 - distributed.utils_perf - WARNING - full garbage collections took 11% CPU time recently (threshold: 10%) 2022-08-04 09:30:41,030 - distributed.utils_perf - WARNING - full garbage collections took 11% CPU time recently (threshold: 10%) 2022-08-04 09:30:43,503 - distributed.utils_perf - WARNING - full garbage collections took 10% CPU time recently (threshold: 10%)
slice(27, 28, None)
2022-08-04 09:31:10,471 - distributed.utils_perf - WARNING - full garbage collections took 10% CPU time recently (threshold: 10%) 2022-08-04 09:31:13,379 - distributed.utils_perf - WARNING - full garbage collections took 11% CPU time recently (threshold: 10%) 2022-08-04 09:31:14,812 - distributed.utils_perf - WARNING - full garbage collections took 11% CPU time recently (threshold: 10%)
CPU times: user 9min 43s, sys: 1min 20s, total: 11min 3s Wall time: 16min 34s