In [1]:
%matplotlib inline
import pandas as pd
import socket
host = socket.getfqdn()

from core import  load, zoom, calc, save,plots,monitor
In [2]:
#reload funcs after updating ./core/*.py
import importlib
importlib.reload(load)
importlib.reload(zoom)
importlib.reload(calc)
importlib.reload(save)
importlib.reload(plots)
importlib.reload(monitor)
Out[2]:
<module 'core.monitor' from '/ccc/work/cont003/gen7420/odakatin/monitor-sedna/notebook/core/monitor.py'>
In [3]:
# 'month':  = 'JOBID' almost month but not really, 

# If you submit the job with job scheduler, above

#below are list of enviroment variable one can pass
#%env local='2"
# local : if True  run dask local cluster, if not true, put number of workers
# setted in the 'local'
# if no 'local ' given, local will be setted automatically to 'True'
#%env ychunk='2'
#%env tchunk='2'
# controls chunk. 'False' sets no modification from original netcdf file's chunk.  
# ychunk=10 will group the original netcdf file to 10 by 10 
# tchunk=1 will chunk the time coordinate one by one
#%env control=FWC_SSH 
# name of control file to be used for computation/plots/save/ 
#%env file_exp= 
# 'file_exp': Which 'experiment' name is it? 
#.    this corresopnds to intake catalog name without path and .yaml
#%env year=
# for Validation, this correspoinds to path/year/month 's year
# for monitoring, this corresponids to 'date'  having * means do all files in the monitoring directory
# setting it as *0[0-9] &*1[0-9]& *[2-3][0-9], the job can be separated in three lots.
#%env month=
# for monitoring  this corresponds to file path path-XIOS.{month}/
#
#%env save=   proceed saving?   True or False  , Default is setted as True 
#%env plot=   proceed plotting?  True or False , Default is setted as True 
#%env calc=   proceed computation? or just load computed result? True or False , Default is setted as True 
#%env save=False
#%env lazy=False
In [4]:
%%time
# 'savefig': Do we save output in html? or not. keep it true. 
savefig=True
client,cluster,control,catalog_url,month,year,daskreport,outputpath = load.set_control(host)
!mkdir -p $outputpath
!mkdir -p $daskreport
client
local True
using host= irene4453.c-irene.mg1.tgcc.ccc.cea.fr starting dask cluster on local= True workers 16
10000000000
False
rome local cluster starting
This code is running on  irene4453.c-irene.mg1.tgcc.ccc.cea.fr using  SEDNA_DELTA_MONITOR file experiment, read from  ../lib/SEDNA_DELTA_MONITOR.yaml  on year= 2012  on month= 02  outputpath= ../results/SEDNA_DELTA_MONITOR/ daskreport= ../results/dask/6413749irene4453.c-irene.mg1.tgcc.ccc.cea.fr_SEDNA_DELTA_MONITOR_02M_IceClim/
CPU times: user 507 ms, sys: 135 ms, total: 643 ms
Wall time: 19.7 s
Out[4]:

Client

Client-d643c42a-1344-11ed-b441-080038b93255

Connection method: Cluster object Cluster type: distributed.LocalCluster
Dashboard: http://127.0.0.1:8787/status

Cluster Info

LocalCluster

42068dea

Dashboard: http://127.0.0.1:8787/status Workers: 16
Total threads: 128 Total memory: 251.06 GiB
Status: running Using processes: True

Scheduler Info

Scheduler

Scheduler-a271ac39-f968-4d0d-b96b-c61c43c0bb33

Comm: tcp://127.0.0.1:41680 Workers: 16
Dashboard: http://127.0.0.1:8787/status Total threads: 128
Started: Just now Total memory: 251.06 GiB

Workers

Worker: 0

Comm: tcp://127.0.0.1:39936 Total threads: 8
Dashboard: http://127.0.0.1:40286/status Memory: 15.69 GiB
Nanny: tcp://127.0.0.1:42339
Local directory: /tmp/dask-worker-space/worker-mawfo74c

Worker: 1

Comm: tcp://127.0.0.1:46577 Total threads: 8
Dashboard: http://127.0.0.1:42365/status Memory: 15.69 GiB
Nanny: tcp://127.0.0.1:41463
Local directory: /tmp/dask-worker-space/worker-kbpzle9a

Worker: 2

Comm: tcp://127.0.0.1:36164 Total threads: 8
Dashboard: http://127.0.0.1:36032/status Memory: 15.69 GiB
Nanny: tcp://127.0.0.1:41302
Local directory: /tmp/dask-worker-space/worker-aa8ivemh

Worker: 3

Comm: tcp://127.0.0.1:37347 Total threads: 8
Dashboard: http://127.0.0.1:45755/status Memory: 15.69 GiB
Nanny: tcp://127.0.0.1:34136
Local directory: /tmp/dask-worker-space/worker-usupdfct

Worker: 4

Comm: tcp://127.0.0.1:33328 Total threads: 8
Dashboard: http://127.0.0.1:36835/status Memory: 15.69 GiB
Nanny: tcp://127.0.0.1:42357
Local directory: /tmp/dask-worker-space/worker-j5vccs6b

Worker: 5

Comm: tcp://127.0.0.1:38047 Total threads: 8
Dashboard: http://127.0.0.1:34423/status Memory: 15.69 GiB
Nanny: tcp://127.0.0.1:46394
Local directory: /tmp/dask-worker-space/worker-zgre43_z

Worker: 6

Comm: tcp://127.0.0.1:46116 Total threads: 8
Dashboard: http://127.0.0.1:36932/status Memory: 15.69 GiB
Nanny: tcp://127.0.0.1:37000
Local directory: /tmp/dask-worker-space/worker-2046n_p5

Worker: 7

Comm: tcp://127.0.0.1:33842 Total threads: 8
Dashboard: http://127.0.0.1:33930/status Memory: 15.69 GiB
Nanny: tcp://127.0.0.1:33184
Local directory: /tmp/dask-worker-space/worker-noxysrca

Worker: 8

Comm: tcp://127.0.0.1:44088 Total threads: 8
Dashboard: http://127.0.0.1:33825/status Memory: 15.69 GiB
Nanny: tcp://127.0.0.1:35108
Local directory: /tmp/dask-worker-space/worker-09ichjvk

Worker: 9

Comm: tcp://127.0.0.1:40163 Total threads: 8
Dashboard: http://127.0.0.1:40558/status Memory: 15.69 GiB
Nanny: tcp://127.0.0.1:42039
Local directory: /tmp/dask-worker-space/worker-1lnas8xd

Worker: 10

Comm: tcp://127.0.0.1:38751 Total threads: 8
Dashboard: http://127.0.0.1:44581/status Memory: 15.69 GiB
Nanny: tcp://127.0.0.1:36040
Local directory: /tmp/dask-worker-space/worker-ev4kw286

Worker: 11

Comm: tcp://127.0.0.1:37363 Total threads: 8
Dashboard: http://127.0.0.1:39367/status Memory: 15.69 GiB
Nanny: tcp://127.0.0.1:34949
Local directory: /tmp/dask-worker-space/worker-vijx23op

Worker: 12

Comm: tcp://127.0.0.1:35819 Total threads: 8
Dashboard: http://127.0.0.1:40755/status Memory: 15.69 GiB
Nanny: tcp://127.0.0.1:42759
Local directory: /tmp/dask-worker-space/worker-mdc10pve

Worker: 13

Comm: tcp://127.0.0.1:36868 Total threads: 8
Dashboard: http://127.0.0.1:46211/status Memory: 15.69 GiB
Nanny: tcp://127.0.0.1:36332
Local directory: /tmp/dask-worker-space/worker-0th1pumi

Worker: 14

Comm: tcp://127.0.0.1:35408 Total threads: 8
Dashboard: http://127.0.0.1:39453/status Memory: 15.69 GiB
Nanny: tcp://127.0.0.1:34425
Local directory: /tmp/dask-worker-space/worker-rmgzltvp

Worker: 15

Comm: tcp://127.0.0.1:45709 Total threads: 8
Dashboard: http://127.0.0.1:44389/status Memory: 15.69 GiB
Nanny: tcp://127.0.0.1:34595
Local directory: /tmp/dask-worker-space/worker-ina1jkri

read plotting information from a csv file¶

In [5]:
df=load.controlfile(control)
#Take out 'later' tagged computations
#df=df[~df['Value'].str.contains('later')]
df
Out[5]:
Value Inputs Equation Zone Plot Colourmap MinMax Unit Oldname Unnamed: 10
IceClim calc.IceClim_load(data,nc_outputpath) ALL IceClim Spectral (0,5) m M-4

Computation starts here¶

Each computation consists of

  1. Load NEMO data set
  2. Zoom data set
  3. Compute (or load computed data set)
  4. Save
  5. Plot
  6. Close
In [6]:
%%time
import os
calcswitch=os.environ.get('calc', 'True') 
lazy=os.environ.get('lazy','False' )
loaddata=((df.Inputs != '').any()) 
print('calcswitch=',calcswitch,'df.Inputs != nothing',loaddata, 'lazy=',lazy)
data = load.datas(catalog_url,df.Inputs,month,year,daskreport,lazy=lazy) if ((calcswitch=='True' )*loaddata) else 0 
data
calcswitch= True df.Inputs != nothing False lazy= False
CPU times: user 0 ns, sys: 481 µs, total: 481 µs
Wall time: 479 µs
Out[6]:
0
In [7]:
%%time
monitor.auto(df,data,savefig,daskreport,outputpath,file_exp='SEDNA'
            )
#calc= True
#save= False
#plot= True
---------------------------------------------------------------------------
AttributeError                            Traceback (most recent call last)
File <timed eval>:1, in <module>

File /ccc/work/cont003/gen7420/odakatin/monitor-sedna/notebook/core/monitor.py:26, in auto(df, val, savefig, daskreport, outputpath, file_exp)
     23 print('#plot=',plotswitch )  
     24 for step in df.itertuples():
     25 # 1. Create data set
---> 26     optimize_dataset(val)
     27     data=val
     28     Value=step.Value

File /ccc/work/cont003/gen7420/odakatin/monitor-sedna/notebook/core/monitor.py:100, in optimize_dataset(ds)
     98 def optimize_dataset(ds):
     99     import dask
--> 100     for varname, da in ds.data_vars.items():
    101         #print(varname)
    102         da=da.data
    103         (da,)=dask.optimize(da)

AttributeError: 'int' object has no attribute 'data_vars'