In [1]:
%matplotlib inline
import pandas as pd
import socket
host = socket.getfqdn()

from core import  load, zoom, calc, save,plots,monitor
In [2]:
#reload funcs after updating ./core/*.py
import importlib
importlib.reload(load)
importlib.reload(zoom)
importlib.reload(calc)
importlib.reload(save)
importlib.reload(plots)
importlib.reload(monitor)
Out[2]:
<module 'core.monitor' from '/ccc/work/cont003/gen7420/odakatin/monitor-sedna/notebook/core/monitor.py'>
In [3]:
# 'month':  = 'JOBID' almost month but not really, 

# If you submit the job with job scheduler, above

#below are list of enviroment variable one can pass
#%env local='2"
# local : if True  run dask local cluster, if not true, put number of workers
# setted in the 'local'
# if no 'local ' given, local will be setted automatically to 'True'
#%env ychunk='2'
#%env tchunk='2'
# controls chunk. 'False' sets no modification from original netcdf file's chunk.  
# ychunk=10 will group the original netcdf file to 10 by 10 
# tchunk=1 will chunk the time coordinate one by one
#%env control=FWC_SSH 
# name of control file to be used for computation/plots/save/ 
#%env file_exp= 
# 'file_exp': Which 'experiment' name is it? 
#.    this corresopnds to intake catalog name without path and .yaml
#%env year=
# for Validation, this correspoinds to path/year/month 's year
# for monitoring, this corresponids to 'date'  having * means do all files in the monitoring directory
# setting it as *0[0-9] &*1[0-9]& *[2-3][0-9], the job can be separated in three lots.
#%env month=
# for monitoring  this corresponds to file path path-XIOS.{month}/
#
#%env save=   proceed saving?   True or False  , Default is setted as True 
#%env plot=   proceed plotting?  True or False , Default is setted as True 
#%env calc=   proceed computation? or just load computed result? True or False , Default is setted as True 
#%env save=False
#%env lazy=False
In [4]:
%%time
# 'savefig': Do we save output in html? or not. keep it true. 
savefig=True
client,cluster,control,catalog_url,month,year,daskreport,outputpath = load.set_control(host)
!mkdir -p $outputpath
!mkdir -p $daskreport
client
local True
using host= irene6085.c-irene.mg1.tgcc.ccc.cea.fr starting dask cluster on local= True workers 16
10000000000
False
rome local cluster starting
This code is running on  irene6085.c-irene.mg1.tgcc.ccc.cea.fr using  SEDNA_DELTA_MONITOR file experiment, read from  ../lib/SEDNA_DELTA_MONITOR.yaml  on year= 2012  on month= 02  outputpath= ../results/SEDNA_DELTA_MONITOR/ daskreport= ../results/dask/6413860irene6085.c-irene.mg1.tgcc.ccc.cea.fr_SEDNA_DELTA_MONITOR_02M_IceConce/_lazyTrue
CPU times: user 543 ms, sys: 131 ms, total: 674 ms
Wall time: 19.3 s
Out[4]:

Client

Client-d006b9ee-1346-11ed-b0cf-080038b93e73

Connection method: Cluster object Cluster type: distributed.LocalCluster
Dashboard: http://127.0.0.1:8787/status

Cluster Info

LocalCluster

38b9ecdb

Dashboard: http://127.0.0.1:8787/status Workers: 16
Total threads: 128 Total memory: 251.06 GiB
Status: running Using processes: True

Scheduler Info

Scheduler

Scheduler-cbde5233-2e5e-40c3-b3d3-16f77432aaf4

Comm: tcp://127.0.0.1:37846 Workers: 16
Dashboard: http://127.0.0.1:8787/status Total threads: 128
Started: Just now Total memory: 251.06 GiB

Workers

Worker: 0

Comm: tcp://127.0.0.1:40534 Total threads: 8
Dashboard: http://127.0.0.1:35784/status Memory: 15.69 GiB
Nanny: tcp://127.0.0.1:39085
Local directory: /tmp/dask-worker-space/worker-0b188lji

Worker: 1

Comm: tcp://127.0.0.1:37244 Total threads: 8
Dashboard: http://127.0.0.1:40546/status Memory: 15.69 GiB
Nanny: tcp://127.0.0.1:42138
Local directory: /tmp/dask-worker-space/worker-ho8i0k2a

Worker: 2

Comm: tcp://127.0.0.1:37017 Total threads: 8
Dashboard: http://127.0.0.1:41883/status Memory: 15.69 GiB
Nanny: tcp://127.0.0.1:45929
Local directory: /tmp/dask-worker-space/worker-8btj8tpw

Worker: 3

Comm: tcp://127.0.0.1:42533 Total threads: 8
Dashboard: http://127.0.0.1:42949/status Memory: 15.69 GiB
Nanny: tcp://127.0.0.1:46500
Local directory: /tmp/dask-worker-space/worker-3p3va0i5

Worker: 4

Comm: tcp://127.0.0.1:42424 Total threads: 8
Dashboard: http://127.0.0.1:41978/status Memory: 15.69 GiB
Nanny: tcp://127.0.0.1:33329
Local directory: /tmp/dask-worker-space/worker-rtjhs0sl

Worker: 5

Comm: tcp://127.0.0.1:39253 Total threads: 8
Dashboard: http://127.0.0.1:34865/status Memory: 15.69 GiB
Nanny: tcp://127.0.0.1:46726
Local directory: /tmp/dask-worker-space/worker-iifotj53

Worker: 6

Comm: tcp://127.0.0.1:38045 Total threads: 8
Dashboard: http://127.0.0.1:45283/status Memory: 15.69 GiB
Nanny: tcp://127.0.0.1:45498
Local directory: /tmp/dask-worker-space/worker-b8j2gc1_

Worker: 7

Comm: tcp://127.0.0.1:44574 Total threads: 8
Dashboard: http://127.0.0.1:39410/status Memory: 15.69 GiB
Nanny: tcp://127.0.0.1:42269
Local directory: /tmp/dask-worker-space/worker-nazqf96j

Worker: 8

Comm: tcp://127.0.0.1:34542 Total threads: 8
Dashboard: http://127.0.0.1:39645/status Memory: 15.69 GiB
Nanny: tcp://127.0.0.1:38521
Local directory: /tmp/dask-worker-space/worker-5b2yf6g8

Worker: 9

Comm: tcp://127.0.0.1:42126 Total threads: 8
Dashboard: http://127.0.0.1:44476/status Memory: 15.69 GiB
Nanny: tcp://127.0.0.1:39369
Local directory: /tmp/dask-worker-space/worker-_st0602x

Worker: 10

Comm: tcp://127.0.0.1:34388 Total threads: 8
Dashboard: http://127.0.0.1:39160/status Memory: 15.69 GiB
Nanny: tcp://127.0.0.1:38537
Local directory: /tmp/dask-worker-space/worker-knuvqapr

Worker: 11

Comm: tcp://127.0.0.1:40959 Total threads: 8
Dashboard: http://127.0.0.1:33509/status Memory: 15.69 GiB
Nanny: tcp://127.0.0.1:44642
Local directory: /tmp/dask-worker-space/worker-vybwt59p

Worker: 12

Comm: tcp://127.0.0.1:42035 Total threads: 8
Dashboard: http://127.0.0.1:34196/status Memory: 15.69 GiB
Nanny: tcp://127.0.0.1:40705
Local directory: /tmp/dask-worker-space/worker-99vza_qz

Worker: 13

Comm: tcp://127.0.0.1:34609 Total threads: 8
Dashboard: http://127.0.0.1:39465/status Memory: 15.69 GiB
Nanny: tcp://127.0.0.1:44051
Local directory: /tmp/dask-worker-space/worker-sg7wi0pc

Worker: 14

Comm: tcp://127.0.0.1:39038 Total threads: 8
Dashboard: http://127.0.0.1:44195/status Memory: 15.69 GiB
Nanny: tcp://127.0.0.1:37520
Local directory: /tmp/dask-worker-space/worker-x21io41x

Worker: 15

Comm: tcp://127.0.0.1:37508 Total threads: 8
Dashboard: http://127.0.0.1:44395/status Memory: 15.69 GiB
Nanny: tcp://127.0.0.1:43289
Local directory: /tmp/dask-worker-space/worker-9v_ah6mh

read plotting information from a csv file¶

In [5]:
df=load.controlfile(control)
#Take out 'later' tagged computations
#df=df[~df['Value'].str.contains('later')]
df
Out[5]:
Value Inputs Equation Zone Plot Colourmap MinMax Unit Oldname Unnamed: 10
IceConce icemod.siconc (data.siconc.where(data.siconc >0)).to_dataset... ALL maps Blues None M-4

Computation starts here¶

Each computation consists of

  1. Load NEMO data set
  2. Zoom data set
  3. Compute (or load computed data set)
  4. Save
  5. Plot
  6. Close
In [6]:
%%time
import os
calcswitch=os.environ.get('calc', 'True') 
lazy=os.environ.get('lazy','True' )
loaddata=((df.Inputs != '').any()) 
print('calcswitch=',calcswitch,'df.Inputs != nothing',loaddata, 'lazy=',lazy)
data = load.datas(catalog_url,df.Inputs,month,year,daskreport,lazy=lazy) if ((calcswitch=='True' )*loaddata) else 0 
data
calcswitch= True df.Inputs != nothing True lazy= True
../lib/SEDNA_DELTA_MONITOR.yaml
using param_xios reading  ../lib/SEDNA_DELTA_MONITOR.yaml
using param_xios reading  <bound method DataSourceBase.describe of sources:
  param_xios:
    args:
      combine: nested
      concat_dim: y
      urlpath: /ccc/work/cont003/gen7420/odakatin/CONFIGS/SEDNA/SEDNA-I/SEDNA_Domain_cfg_Tgt_20210423_tsh10m_L1/param_f32/x_*.nc
      xarray_kwargs:
        compat: override
        coords: minimal
        data_vars: minimal
        parallel: true
    description: SEDNA NEMO parameters from MPI output  nav_lon lat fails
    driver: intake_xarray.netcdf.NetCDFSource
    metadata:
      catalog_dir: /ccc/work/cont003/gen7420/odakatin/monitor-sedna/notebook/../lib/
>
{'name': 'param_xios', 'container': 'xarray', 'plugin': ['netcdf'], 'driver': ['netcdf'], 'description': 'SEDNA NEMO parameters from MPI output  nav_lon lat fails', 'direct_access': 'forbid', 'user_parameters': [{'name': 'path', 'description': 'file coordinate', 'type': 'str', 'default': '/ccc/work/cont003/gen7420/odakatin/CONFIGS/SEDNA/MESH/SEDNA_mesh_mask_Tgt_20210423_tsh10m_L1/param'}], 'metadata': {}, 'args': {'urlpath': '/ccc/work/cont003/gen7420/odakatin/CONFIGS/SEDNA/SEDNA-I/SEDNA_Domain_cfg_Tgt_20210423_tsh10m_L1/param_f32/x_*.nc', 'combine': 'nested', 'concat_dim': 'y'}}
0 read icemod ['siconc']
using load_data_xios reading  icemod
using load_data_xios reading  {'name': 'data_xios', 'container': 'xarray', 'plugin': ['netcdf'], 'driver': ['netcdf'], 'description': 'SEDNA NEMO outputs from different xios server', 'direct_access': 'forbid', 'user_parameters': [{'name': 'path', 'description': 'name of config', 'type': 'str', 'default': '/ccc/scratch/cont003/gen7420/talandel/SEDNA/SEDNA-DELTA-S/SPLIT/1d'}, {'name': 'fileexp', 'description': 'name of config', 'type': 'str', 'default': 'SEDNA-DELTA'}, {'name': 'month', 'description': 'running number 2 digit', 'type': 'str', 'default': '02'}, {'name': 'freq', 'description': '1d or 1m', 'type': 'str', 'default': '1d'}, {'name': 'year', 'description': 'last digits of yearmonthdate.', 'type': 'str', 'default': '2012'}, {'name': 'file', 'description': 'file name', 'type': 'str', 'default': 'icemod'}, {'name': 'eio', 'description': 'xios mpi number', 'type': 'str', 'default': '0[0-5][0-9][0-9]'}], 'metadata': {}, 'args': {'urlpath': '{{path}}/{{year}}/{{month}}/*{{file}}_*_{{eio}}.nc', 'combine': 'nested', 'concat_dim': 'time_counter,x,y'}}
      took 130.4530258178711 seconds
0 merging icemod ['siconc']
param nav_lon will be included in data
param nav_lat will be included in data
param mask2d will be included in data
ychunk= 10 calldatas_y_rechunk
sum_num (13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12)
start rechunking with (130, 122, 120, 120, 120, 120, 120, 120, 120, 120, 120, 120, 120, 120, 120, 120, 120, 120, 120, 120, 120, 120, 120, 120, 120, 120, 120, 120, 120, 120, 120, 120, 120, 120, 120, 120, 120, 120, 120, 120, 120, 120, 120, 120, 120, 120, 120, 120, 120, 120, 120, 120, 120, 120, 48)
end of y_rechunk
CPU times: user 1min 27s, sys: 6.59 s, total: 1min 33s
Wall time: 2min 33s
Out[6]:
<xarray.Dataset>
Dimensions:        (t: 28, y: 6540, x: 6560)
Coordinates:
  * t              (t) object 2012-02-01 12:00:00 ... 2012-02-28 12:00:00
  * y              (y) int64 1 2 3 4 5 6 7 ... 6535 6536 6537 6538 6539 6540
  * x              (x) int64 1 2 3 4 5 6 7 ... 6555 6556 6557 6558 6559 6560
    nav_lat        (y, x) float32 dask.array<chunksize=(130, 6560), meta=np.ndarray>
    nav_lon        (y, x) float32 dask.array<chunksize=(130, 6560), meta=np.ndarray>
    time_centered  (t) object dask.array<chunksize=(28,), meta=np.ndarray>
    mask2d         (y, x) bool dask.array<chunksize=(130, 6560), meta=np.ndarray>
Data variables:
    siconc         (t, y, x) float32 dask.array<chunksize=(28, 130, 6560), meta=np.ndarray>
Attributes: (12/26)
    name:                    /ccc/scratch/cont003/ra5563/talandel/ONGOING-RUN...
    description:             ice variables
    title:                   ice variables
    Conventions:             CF-1.6
    timeStamp:               2022-Jan-18 16:51:17 GMT
    uuid:                    56b165e2-bdda-4b33-a2e9-04a59f3d06e9
    ...                      ...
    start_date:              20090101
    output_frequency:        1d
    CONFIG:                  SEDNA
    CASE:                    DELTA
    history:                 Wed Jan 19 12:40:39 2022: ncks -4 -L 1 SEDNA-DEL...
    NCO:                     netCDF Operators version 4.9.1 (Homepage = http:...
xarray.Dataset
    • t: 28
    • y: 6540
    • x: 6560
    • t
      (t)
      object
      2012-02-01 12:00:00 ... 2012-02-...
      axis :
      T
      standard_name :
      time
      long_name :
      Time axis
      time_origin :
      1900-01-01 00:00:00
      bounds :
      time_counter_bounds
      array([cftime.DatetimeNoLeap(2012, 2, 1, 12, 0, 0, 0, has_year_zero=True),
             cftime.DatetimeNoLeap(2012, 2, 2, 12, 0, 0, 0, has_year_zero=True),
             cftime.DatetimeNoLeap(2012, 2, 3, 12, 0, 0, 0, has_year_zero=True),
             cftime.DatetimeNoLeap(2012, 2, 4, 12, 0, 0, 0, has_year_zero=True),
             cftime.DatetimeNoLeap(2012, 2, 5, 12, 0, 0, 0, has_year_zero=True),
             cftime.DatetimeNoLeap(2012, 2, 6, 12, 0, 0, 0, has_year_zero=True),
             cftime.DatetimeNoLeap(2012, 2, 7, 12, 0, 0, 0, has_year_zero=True),
             cftime.DatetimeNoLeap(2012, 2, 8, 12, 0, 0, 0, has_year_zero=True),
             cftime.DatetimeNoLeap(2012, 2, 9, 12, 0, 0, 0, has_year_zero=True),
             cftime.DatetimeNoLeap(2012, 2, 10, 12, 0, 0, 0, has_year_zero=True),
             cftime.DatetimeNoLeap(2012, 2, 11, 12, 0, 0, 0, has_year_zero=True),
             cftime.DatetimeNoLeap(2012, 2, 12, 12, 0, 0, 0, has_year_zero=True),
             cftime.DatetimeNoLeap(2012, 2, 13, 12, 0, 0, 0, has_year_zero=True),
             cftime.DatetimeNoLeap(2012, 2, 14, 12, 0, 0, 0, has_year_zero=True),
             cftime.DatetimeNoLeap(2012, 2, 15, 12, 0, 0, 0, has_year_zero=True),
             cftime.DatetimeNoLeap(2012, 2, 16, 12, 0, 0, 0, has_year_zero=True),
             cftime.DatetimeNoLeap(2012, 2, 17, 12, 0, 0, 0, has_year_zero=True),
             cftime.DatetimeNoLeap(2012, 2, 18, 12, 0, 0, 0, has_year_zero=True),
             cftime.DatetimeNoLeap(2012, 2, 19, 12, 0, 0, 0, has_year_zero=True),
             cftime.DatetimeNoLeap(2012, 2, 20, 12, 0, 0, 0, has_year_zero=True),
             cftime.DatetimeNoLeap(2012, 2, 21, 12, 0, 0, 0, has_year_zero=True),
             cftime.DatetimeNoLeap(2012, 2, 22, 12, 0, 0, 0, has_year_zero=True),
             cftime.DatetimeNoLeap(2012, 2, 23, 12, 0, 0, 0, has_year_zero=True),
             cftime.DatetimeNoLeap(2012, 2, 24, 12, 0, 0, 0, has_year_zero=True),
             cftime.DatetimeNoLeap(2012, 2, 25, 12, 0, 0, 0, has_year_zero=True),
             cftime.DatetimeNoLeap(2012, 2, 26, 12, 0, 0, 0, has_year_zero=True),
             cftime.DatetimeNoLeap(2012, 2, 27, 12, 0, 0, 0, has_year_zero=True),
             cftime.DatetimeNoLeap(2012, 2, 28, 12, 0, 0, 0, has_year_zero=True)],
            dtype=object)
    • y
      (y)
      int64
      1 2 3 4 5 ... 6537 6538 6539 6540
      array([   1,    2,    3, ..., 6538, 6539, 6540])
    • x
      (x)
      int64
      1 2 3 4 5 ... 6557 6558 6559 6560
      array([   1,    2,    3, ..., 6558, 6559, 6560])
    • nav_lat
      (y, x)
      float32
      dask.array<chunksize=(130, 6560), meta=np.ndarray>
      Array Chunk
      Bytes 163.66 MiB 3.25 MiB
      Shape (6540, 6560) (130, 6560)
      Count 1687 Tasks 55 Chunks
      Type float32 numpy.ndarray
      6560 6540
    • nav_lon
      (y, x)
      float32
      dask.array<chunksize=(130, 6560), meta=np.ndarray>
      Array Chunk
      Bytes 163.66 MiB 3.25 MiB
      Shape (6540, 6560) (130, 6560)
      Count 1687 Tasks 55 Chunks
      Type float32 numpy.ndarray
      6560 6540
    • time_centered
      (t)
      object
      dask.array<chunksize=(28,), meta=np.ndarray>
      standard_name :
      time
      long_name :
      Time axis
      time_origin :
      1900-01-01 00:00:00
      bounds :
      time_centered_bounds
      Array Chunk
      Bytes 224 B 224 B
      Shape (28,) (28,)
      Count 2 Tasks 1 Chunks
      Type object numpy.ndarray
      28 1
    • mask2d
      (y, x)
      bool
      dask.array<chunksize=(130, 6560), meta=np.ndarray>
      Array Chunk
      Bytes 40.91 MiB 832.81 kiB
      Shape (6540, 6560) (130, 6560)
      Count 1687 Tasks 55 Chunks
      Type bool numpy.ndarray
      6560 6540
    • siconc
      (t, y, x)
      float32
      dask.array<chunksize=(28, 130, 6560), meta=np.ndarray>
      standard_name :
      sea_ice_area_fraction
      long_name :
      ice concentration
      units :
      online_operation :
      average
      interval_operation :
      40 s
      interval_write :
      1 d
      cell_methods :
      time: mean (interval: 40 s)
      Array Chunk
      Bytes 4.48 GiB 91.09 MiB
      Shape (28, 6540, 6560) (28, 130, 6560)
      Count 1156 Tasks 55 Chunks
      Type float32 numpy.ndarray
      6560 6540 28
  • name :
    /ccc/scratch/cont003/ra5563/talandel/ONGOING-RUNS/SEDNA-DELTA-XIOS.47/SEDNA-DELTA_1d_icemod
    description :
    ice variables
    title :
    ice variables
    Conventions :
    CF-1.6
    timeStamp :
    2022-Jan-18 16:51:17 GMT
    uuid :
    56b165e2-bdda-4b33-a2e9-04a59f3d06e9
    ibegin :
    0
    ni :
    6560
    jbegin :
    0
    nj :
    13
    DOMAIN_number_total :
    544
    DOMAIN_number :
    0
    DOMAIN_dimensions_ids :
    [2 3]
    DOMAIN_size_global :
    [6560 6540]
    DOMAIN_size_local :
    [6560 13]
    DOMAIN_position_first :
    [1 1]
    DOMAIN_position_last :
    [6560 13]
    DOMAIN_halo_size_start :
    [0 0]
    DOMAIN_halo_size_end :
    [0 0]
    DOMAIN_type :
    box
    start_date :
    20090101
    output_frequency :
    1d
    CONFIG :
    SEDNA
    CASE :
    DELTA
    history :
    Wed Jan 19 12:40:39 2022: ncks -4 -L 1 SEDNA-DELTA_1d_icemod_201202-201202_NOZIP_0000.nc /ccc/scratch/cont003/gen7420/talandel/SEDNA/SEDNA-DELTA-S/SPLIT/1d/2012/02/SEDNA-DELTA_1d_icemod_201202-201202_0000.nc Wed Jan 19 12:40:28 2022: ncrcat -n 28,2,1 SEDNA-DELTA_1d_icemod_0000_01.nc SEDNA-DELTA_1d_icemod_201202-201202_NOZIP_0000.nc
    NCO :
    netCDF Operators version 4.9.1 (Homepage = http://nco.sf.net, Code = http://github.com/nco/nco)
In [7]:
%%time
monitor.auto(df,data,savefig,daskreport,outputpath,file_exp='SEDNA'
            )
#calc= True
#save= True
#plot= False
monitor.optimize_dataset(data)
Value='IceConce'
Zone='ALL'
Plot='maps'
cmap='Blues'
clabel=' '
clim= None
outputpath='../results/SEDNA_DELTA_MONITOR/'
nc_outputpath='../nc_results/SEDNA_DELTA_MONITOR/'
filename='SEDNA_maps_ALL_IceConce'
#3 Start computing 
dtaa= (data.siconc.where(data.siconc >0)).to_dataset(name='siconc').chunk({ 't': -1 }).unify_chunks().persist() 
monitor.optimize_dataset(dtaa)
<xarray.Dataset>
Dimensions:        (t: 28, y: 6540, x: 6560)
Coordinates:
  * t              (t) object 2012-02-01 12:00:00 ... 2012-02-28 12:00:00
  * y              (y) int64 1 2 3 4 5 6 7 ... 6535 6536 6537 6538 6539 6540
  * x              (x) int64 1 2 3 4 5 6 7 ... 6555 6556 6557 6558 6559 6560
    nav_lat        (y, x) float32 dask.array<chunksize=(130, 6560), meta=np.ndarray>
    nav_lon        (y, x) float32 dask.array<chunksize=(130, 6560), meta=np.ndarray>
    time_centered  (t) object dask.array<chunksize=(28,), meta=np.ndarray>
    mask2d         (y, x) bool dask.array<chunksize=(130, 6560), meta=np.ndarray>
Data variables:
    siconc         (t, y, x) float32 dask.array<chunksize=(28, 130, 6560), meta=np.ndarray>
xarray.Dataset
    • t: 28
    • y: 6540
    • x: 6560
    • t
      (t)
      object
      2012-02-01 12:00:00 ... 2012-02-...
      axis :
      T
      standard_name :
      time
      long_name :
      Time axis
      time_origin :
      1900-01-01 00:00:00
      bounds :
      time_counter_bounds
      array([cftime.DatetimeNoLeap(2012, 2, 1, 12, 0, 0, 0, has_year_zero=True),
             cftime.DatetimeNoLeap(2012, 2, 2, 12, 0, 0, 0, has_year_zero=True),
             cftime.DatetimeNoLeap(2012, 2, 3, 12, 0, 0, 0, has_year_zero=True),
             cftime.DatetimeNoLeap(2012, 2, 4, 12, 0, 0, 0, has_year_zero=True),
             cftime.DatetimeNoLeap(2012, 2, 5, 12, 0, 0, 0, has_year_zero=True),
             cftime.DatetimeNoLeap(2012, 2, 6, 12, 0, 0, 0, has_year_zero=True),
             cftime.DatetimeNoLeap(2012, 2, 7, 12, 0, 0, 0, has_year_zero=True),
             cftime.DatetimeNoLeap(2012, 2, 8, 12, 0, 0, 0, has_year_zero=True),
             cftime.DatetimeNoLeap(2012, 2, 9, 12, 0, 0, 0, has_year_zero=True),
             cftime.DatetimeNoLeap(2012, 2, 10, 12, 0, 0, 0, has_year_zero=True),
             cftime.DatetimeNoLeap(2012, 2, 11, 12, 0, 0, 0, has_year_zero=True),
             cftime.DatetimeNoLeap(2012, 2, 12, 12, 0, 0, 0, has_year_zero=True),
             cftime.DatetimeNoLeap(2012, 2, 13, 12, 0, 0, 0, has_year_zero=True),
             cftime.DatetimeNoLeap(2012, 2, 14, 12, 0, 0, 0, has_year_zero=True),
             cftime.DatetimeNoLeap(2012, 2, 15, 12, 0, 0, 0, has_year_zero=True),
             cftime.DatetimeNoLeap(2012, 2, 16, 12, 0, 0, 0, has_year_zero=True),
             cftime.DatetimeNoLeap(2012, 2, 17, 12, 0, 0, 0, has_year_zero=True),
             cftime.DatetimeNoLeap(2012, 2, 18, 12, 0, 0, 0, has_year_zero=True),
             cftime.DatetimeNoLeap(2012, 2, 19, 12, 0, 0, 0, has_year_zero=True),
             cftime.DatetimeNoLeap(2012, 2, 20, 12, 0, 0, 0, has_year_zero=True),
             cftime.DatetimeNoLeap(2012, 2, 21, 12, 0, 0, 0, has_year_zero=True),
             cftime.DatetimeNoLeap(2012, 2, 22, 12, 0, 0, 0, has_year_zero=True),
             cftime.DatetimeNoLeap(2012, 2, 23, 12, 0, 0, 0, has_year_zero=True),
             cftime.DatetimeNoLeap(2012, 2, 24, 12, 0, 0, 0, has_year_zero=True),
             cftime.DatetimeNoLeap(2012, 2, 25, 12, 0, 0, 0, has_year_zero=True),
             cftime.DatetimeNoLeap(2012, 2, 26, 12, 0, 0, 0, has_year_zero=True),
             cftime.DatetimeNoLeap(2012, 2, 27, 12, 0, 0, 0, has_year_zero=True),
             cftime.DatetimeNoLeap(2012, 2, 28, 12, 0, 0, 0, has_year_zero=True)],
            dtype=object)
    • y
      (y)
      int64
      1 2 3 4 5 ... 6537 6538 6539 6540
      array([   1,    2,    3, ..., 6538, 6539, 6540])
    • x
      (x)
      int64
      1 2 3 4 5 ... 6557 6558 6559 6560
      array([   1,    2,    3, ..., 6558, 6559, 6560])
    • nav_lat
      (y, x)
      float32
      dask.array<chunksize=(130, 6560), meta=np.ndarray>
      Array Chunk
      Bytes 163.66 MiB 3.25 MiB
      Shape (6540, 6560) (130, 6560)
      Count 55 Tasks 55 Chunks
      Type float32 numpy.ndarray
      6560 6540
    • nav_lon
      (y, x)
      float32
      dask.array<chunksize=(130, 6560), meta=np.ndarray>
      Array Chunk
      Bytes 163.66 MiB 3.25 MiB
      Shape (6540, 6560) (130, 6560)
      Count 55 Tasks 55 Chunks
      Type float32 numpy.ndarray
      6560 6540
    • time_centered
      (t)
      object
      dask.array<chunksize=(28,), meta=np.ndarray>
      standard_name :
      time
      long_name :
      Time axis
      time_origin :
      1900-01-01 00:00:00
      bounds :
      time_centered_bounds
      Array Chunk
      Bytes 224 B 224 B
      Shape (28,) (28,)
      Count 1 Tasks 1 Chunks
      Type object numpy.ndarray
      28 1
    • mask2d
      (y, x)
      bool
      dask.array<chunksize=(130, 6560), meta=np.ndarray>
      Array Chunk
      Bytes 40.91 MiB 832.81 kiB
      Shape (6540, 6560) (130, 6560)
      Count 55 Tasks 55 Chunks
      Type bool numpy.ndarray
      6560 6540
    • siconc
      (t, y, x)
      float32
      dask.array<chunksize=(28, 130, 6560), meta=np.ndarray>
      standard_name :
      sea_ice_area_fraction
      long_name :
      ice concentration
      units :
      online_operation :
      average
      interval_operation :
      40 s
      interval_write :
      1 d
      cell_methods :
      time: mean (interval: 40 s)
      Array Chunk
      Bytes 4.48 GiB 91.09 MiB
      Shape (28, 6540, 6560) (28, 130, 6560)
      Count 55 Tasks 55 Chunks
      Type float32 numpy.ndarray
      6560 6540 28
#4 Saving  SEDNA_maps_ALL_IceConce
dtaa=save.datas(data,plot=Plot,path=nc_outputpath,filename=filename)
start saving data
saving data in a file
---------------------------------------------------------------------------
UnboundLocalError                         Traceback (most recent call last)
File <timed eval>:1, in <module>

File /ccc/work/cont003/gen7420/odakatin/monitor-sedna/notebook/core/monitor.py:84, in auto(df, val, savefig, daskreport, outputpath, file_exp)
     82         print('dtaa=save.datas(data,plot=Plot,path=nc_outputpath,filename=filename)' )
     83         with performance_report(filename=daskreport+"_save_"+step.Value+".html"):
---> 84             save.datas(data,plot=Plot,path=nc_outputpath,filename=filename)                
     85 # 5. Plot       
     86     if plotswitch=='True': 

File /ccc/work/cont003/gen7420/odakatin/monitor-sedna/notebook/core/save.py:24, in datas(data, plot, path, filename)
     22     twoD(data,path,filename,nested=False)
     23 else :
---> 24     twoD(data,path,filename)
     25 return None

File /ccc/work/cont003/gen7420/odakatin/monitor-sedna/notebook/core/save.py:57, in twoD(data, path, filename, nested)
     55 print('saving data in a file')
     56 filesave=path+filename  
---> 57 return to_mfnetcdf_map(data,prefix=filesave, nested=nested)

File /ccc/work/cont003/gen7420/odakatin/monitor-sedna/notebook/core/save.py:219, in to_mfnetcdf_map(ds, prefix, nested)
    217             slices.append(slice(start, stop))
    218             start = stop
--> 219     chunk_slices[dim] = slices
    220 for i in chunk_slices['t']:
    221     print(i)

UnboundLocalError: local variable 'slices' referenced before assignment