In [1]:
%matplotlib inline
import pandas as pd
import socket
host = socket.getfqdn()

from core import  load, zoom, calc, save,plots,monitor
In [2]:
#reload funcs after updating ./core/*.py
import importlib
importlib.reload(load)
importlib.reload(zoom)
importlib.reload(calc)
importlib.reload(save)
importlib.reload(plots)
importlib.reload(monitor)
Out[2]:
<module 'core.monitor' from '/ccc/work/cont003/gen7420/odakatin/monitor-sedna/notebook/core/monitor.py'>
In [3]:
# 'month':  = 'JOBID' almost month but not really, 

# If you submit the job with job scheduler, above

#below are list of enviroment variable one can pass
#%env local='2"
# local : if True  run dask local cluster, if not true, put number of workers
# setted in the 'local'
# if no 'local ' given, local will be setted automatically to 'True'
#%env ychunk='2'
#%env tchunk='2'
# controls chunk. 'False' sets no modification from original netcdf file's chunk.  
# ychunk=10 will group the original netcdf file to 10 by 10 
# tchunk=1 will chunk the time coordinate one by one
#%env control=FWC_SSH 
# name of control file to be used for computation/plots/save/ 
#%env file_exp= 
# 'file_exp': Which 'experiment' name is it? 
#.    this corresopnds to intake catalog name without path and .yaml
#%env year=
# for Validation, this correspoinds to path/year/month 's year
# for monitoring, this corresponids to 'date'  having * means do all files in the monitoring directory
# setting it as *0[0-9] &*1[0-9]& *[2-3][0-9], the job can be separated in three lots.
#%env month=
# for monitoring  this corresponds to file path path-XIOS.{month}/
#
#%env save=   proceed saving?   True or False  , Default is setted as True 
#%env plot=   proceed plotting?  True or False , Default is setted as True 
#%env calc=   proceed computation? or just load computed result? True or False , Default is setted as True 
#%env save=False
#%env lazy=False
In [4]:
%%time
# 'savefig': Do we save output in html? or not. keep it true. 
savefig=True
client,cluster,control,catalog_url,month,year,daskreport,outputpath = load.set_control(host)
!mkdir -p $outputpath
!mkdir -p $daskreport
client
local True
using host= irene5428.c-irene.mg1.tgcc.ccc.cea.fr starting dask cluster on local= True workers 16
10000000000
False
rome local cluster starting
This code is running on  irene5428.c-irene.mg1.tgcc.ccc.cea.fr using  SEDNA_DELTA_MONITOR file experiment, read from  ../lib/SEDNA_DELTA_MONITOR.yaml  on year= 2012  on month= 02  outputpath= ../results/SEDNA_DELTA_MONITOR/ daskreport= ../results/dask/6413746irene5428.c-irene.mg1.tgcc.ccc.cea.fr_SEDNA_DELTA_MONITOR_02M_IceThick/
CPU times: user 557 ms, sys: 127 ms, total: 684 ms
Wall time: 20.9 s
Out[4]:

Client

Client-01e7918b-1344-11ed-ad96-080038b94039

Connection method: Cluster object Cluster type: distributed.LocalCluster
Dashboard: http://127.0.0.1:8787/status

Cluster Info

LocalCluster

17728407

Dashboard: http://127.0.0.1:8787/status Workers: 16
Total threads: 128 Total memory: 251.06 GiB
Status: running Using processes: True

Scheduler Info

Scheduler

Scheduler-28555c69-3f13-4e45-868f-3d200653027c

Comm: tcp://127.0.0.1:37406 Workers: 16
Dashboard: http://127.0.0.1:8787/status Total threads: 128
Started: Just now Total memory: 251.06 GiB

Workers

Worker: 0

Comm: tcp://127.0.0.1:35748 Total threads: 8
Dashboard: http://127.0.0.1:33635/status Memory: 15.69 GiB
Nanny: tcp://127.0.0.1:39145
Local directory: /tmp/dask-worker-space/worker-qsn1y4l9

Worker: 1

Comm: tcp://127.0.0.1:44627 Total threads: 8
Dashboard: http://127.0.0.1:33239/status Memory: 15.69 GiB
Nanny: tcp://127.0.0.1:35520
Local directory: /tmp/dask-worker-space/worker-6uc6th20

Worker: 2

Comm: tcp://127.0.0.1:36276 Total threads: 8
Dashboard: http://127.0.0.1:34414/status Memory: 15.69 GiB
Nanny: tcp://127.0.0.1:43439
Local directory: /tmp/dask-worker-space/worker-1m286qrv

Worker: 3

Comm: tcp://127.0.0.1:34253 Total threads: 8
Dashboard: http://127.0.0.1:40280/status Memory: 15.69 GiB
Nanny: tcp://127.0.0.1:33297
Local directory: /tmp/dask-worker-space/worker-3tylkuzl

Worker: 4

Comm: tcp://127.0.0.1:44630 Total threads: 8
Dashboard: http://127.0.0.1:33545/status Memory: 15.69 GiB
Nanny: tcp://127.0.0.1:38867
Local directory: /tmp/dask-worker-space/worker-mfjwyuak

Worker: 5

Comm: tcp://127.0.0.1:40066 Total threads: 8
Dashboard: http://127.0.0.1:38231/status Memory: 15.69 GiB
Nanny: tcp://127.0.0.1:44260
Local directory: /tmp/dask-worker-space/worker-tf0ewf2g

Worker: 6

Comm: tcp://127.0.0.1:35954 Total threads: 8
Dashboard: http://127.0.0.1:37260/status Memory: 15.69 GiB
Nanny: tcp://127.0.0.1:44179
Local directory: /tmp/dask-worker-space/worker-sc40o1pv

Worker: 7

Comm: tcp://127.0.0.1:46880 Total threads: 8
Dashboard: http://127.0.0.1:35206/status Memory: 15.69 GiB
Nanny: tcp://127.0.0.1:42876
Local directory: /tmp/dask-worker-space/worker-_8pjlwly

Worker: 8

Comm: tcp://127.0.0.1:45518 Total threads: 8
Dashboard: http://127.0.0.1:34247/status Memory: 15.69 GiB
Nanny: tcp://127.0.0.1:36254
Local directory: /tmp/dask-worker-space/worker-jsjyjv7r

Worker: 9

Comm: tcp://127.0.0.1:45823 Total threads: 8
Dashboard: http://127.0.0.1:43548/status Memory: 15.69 GiB
Nanny: tcp://127.0.0.1:34396
Local directory: /tmp/dask-worker-space/worker-y4fw7z5b

Worker: 10

Comm: tcp://127.0.0.1:38558 Total threads: 8
Dashboard: http://127.0.0.1:35276/status Memory: 15.69 GiB
Nanny: tcp://127.0.0.1:45233
Local directory: /tmp/dask-worker-space/worker-sbbnnrj9

Worker: 11

Comm: tcp://127.0.0.1:39550 Total threads: 8
Dashboard: http://127.0.0.1:35290/status Memory: 15.69 GiB
Nanny: tcp://127.0.0.1:34398
Local directory: /tmp/dask-worker-space/worker-4c62wad9

Worker: 12

Comm: tcp://127.0.0.1:41251 Total threads: 8
Dashboard: http://127.0.0.1:39590/status Memory: 15.69 GiB
Nanny: tcp://127.0.0.1:44626
Local directory: /tmp/dask-worker-space/worker-uf8jbml7

Worker: 13

Comm: tcp://127.0.0.1:33408 Total threads: 8
Dashboard: http://127.0.0.1:42250/status Memory: 15.69 GiB
Nanny: tcp://127.0.0.1:40086
Local directory: /tmp/dask-worker-space/worker-npc99ky9

Worker: 14

Comm: tcp://127.0.0.1:36117 Total threads: 8
Dashboard: http://127.0.0.1:33362/status Memory: 15.69 GiB
Nanny: tcp://127.0.0.1:36983
Local directory: /tmp/dask-worker-space/worker-ov_z28cx

Worker: 15

Comm: tcp://127.0.0.1:37893 Total threads: 8
Dashboard: http://127.0.0.1:34163/status Memory: 15.69 GiB
Nanny: tcp://127.0.0.1:35020
Local directory: /tmp/dask-worker-space/worker-dhx7vlhf

read plotting information from a csv file¶

In [5]:
df=load.controlfile(control)
#Take out 'later' tagged computations
#df=df[~df['Value'].str.contains('later')]
df
Out[5]:
Value Inputs Equation Zone Plot Colourmap MinMax Unit Oldname Unnamed: 10
IceThickness icemod.sivolu (data.sivolu.where(data.sivolu >0)).to_dataset... ALL maps Spectral (0,5) m M-4

Computation starts here¶

Each computation consists of

  1. Load NEMO data set
  2. Zoom data set
  3. Compute (or load computed data set)
  4. Save
  5. Plot
  6. Close
In [6]:
%%time
import os
calcswitch=os.environ.get('calc', 'True') 
lazy=os.environ.get('lazy','False' )
loaddata=((df.Inputs != '').any()) 
print('calcswitch=',calcswitch,'df.Inputs != nothing',loaddata, 'lazy=',lazy)
data = load.datas(catalog_url,df.Inputs,month,year,daskreport,lazy=lazy) if ((calcswitch=='True' )*loaddata) else 0 
data
calcswitch= True df.Inputs != nothing True lazy= False
../lib/SEDNA_DELTA_MONITOR.yaml
using param_xios reading  ../lib/SEDNA_DELTA_MONITOR.yaml
using param_xios reading  <bound method DataSourceBase.describe of sources:
  param_xios:
    args:
      combine: nested
      concat_dim: y
      urlpath: /ccc/work/cont003/gen7420/odakatin/CONFIGS/SEDNA/SEDNA-I/SEDNA_Domain_cfg_Tgt_20210423_tsh10m_L1/param_f32/x_*.nc
      xarray_kwargs:
        compat: override
        coords: minimal
        data_vars: minimal
        parallel: true
    description: SEDNA NEMO parameters from MPI output  nav_lon lat fails
    driver: intake_xarray.netcdf.NetCDFSource
    metadata:
      catalog_dir: /ccc/work/cont003/gen7420/odakatin/monitor-sedna/notebook/../lib/
>
{'name': 'param_xios', 'container': 'xarray', 'plugin': ['netcdf'], 'driver': ['netcdf'], 'description': 'SEDNA NEMO parameters from MPI output  nav_lon lat fails', 'direct_access': 'forbid', 'user_parameters': [{'name': 'path', 'description': 'file coordinate', 'type': 'str', 'default': '/ccc/work/cont003/gen7420/odakatin/CONFIGS/SEDNA/MESH/SEDNA_mesh_mask_Tgt_20210423_tsh10m_L1/param'}], 'metadata': {}, 'args': {'urlpath': '/ccc/work/cont003/gen7420/odakatin/CONFIGS/SEDNA/SEDNA-I/SEDNA_Domain_cfg_Tgt_20210423_tsh10m_L1/param_f32/x_*.nc', 'combine': 'nested', 'concat_dim': 'y'}}
0 read icemod ['sivolu']
using load_data_xios_kerchunk reading  icemod
using load_data_xios_kerchunk reading  <bound method DataSourceBase.describe of sources:
  data_xios_kerchunk:
    args:
      consolidated: false
      storage_options:
        fo: file:////ccc/cont003/home/ra5563/ra5563/catalogue/DELTA/201202/icemod_0[0-5][0-9][0-9].json
        target_protocol: file
      urlpath: reference://
    description: CREG025 NEMO outputs from different xios server in kerchunk format
    driver: intake_xarray.xzarr.ZarrSource
    metadata:
      catalog_dir: /ccc/work/cont003/gen7420/odakatin/monitor-sedna/notebook/../lib/
>
      took 31.52891778945923 seconds
0 merging icemod ['sivolu']
param nav_lat will be included in data
param nav_lon will be included in data
param mask2d will be included in data
ychunk= 10 calldatas_y_rechunk
sum_num (13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12)
start rechunking with (130, 122, 120, 120, 120, 120, 120, 120, 120, 120, 120, 120, 120, 120, 120, 120, 120, 120, 120, 120, 120, 120, 120, 120, 120, 120, 120, 120, 120, 120, 120, 120, 120, 120, 120, 120, 120, 120, 120, 120, 120, 120, 120, 120, 120, 120, 120, 120, 120, 120, 120, 120, 120, 120, 48)
end of y_rechunk
CPU times: user 33.1 s, sys: 2.56 s, total: 35.7 s
Wall time: 55.3 s
Out[6]:
<xarray.Dataset>
Dimensions:        (t: 28, y: 6540, x: 6560)
Coordinates:
    nav_lat        (y, x) float32 dask.array<chunksize=(130, 6560), meta=np.ndarray>
    nav_lon        (y, x) float32 dask.array<chunksize=(130, 6560), meta=np.ndarray>
    time_centered  (t) object dask.array<chunksize=(1,), meta=np.ndarray>
  * t              (t) object 2012-02-01 12:00:00 ... 2012-02-28 12:00:00
  * y              (y) int64 1 2 3 4 5 6 7 ... 6535 6536 6537 6538 6539 6540
  * x              (x) int64 1 2 3 4 5 6 7 ... 6555 6556 6557 6558 6559 6560
    mask2d         (y, x) bool dask.array<chunksize=(130, 6560), meta=np.ndarray>
Data variables:
    sivolu         (t, y, x) float32 dask.array<chunksize=(1, 130, 6560), meta=np.ndarray>
Attributes: (12/26)
    CASE:                    DELTA
    CONFIG:                  SEDNA
    Conventions:             CF-1.6
    DOMAIN_dimensions_ids:   [2, 3]
    DOMAIN_halo_size_end:    [0, 0]
    DOMAIN_halo_size_start:  [0, 0]
    ...                      ...
    nj:                      13
    output_frequency:        1d
    start_date:              20090101
    timeStamp:               2022-Jan-18 16:51:17 GMT
    title:                   ice variables
    uuid:                    56b165e2-bdda-4b33-a2e9-04a59f3d06e9
xarray.Dataset
    • t: 28
    • y: 6540
    • x: 6560
    • nav_lat
      (y, x)
      float32
      dask.array<chunksize=(130, 6560), meta=np.ndarray>
      Array Chunk
      Bytes 163.66 MiB 3.25 MiB
      Shape (6540, 6560) (130, 6560)
      Count 1687 Tasks 55 Chunks
      Type float32 numpy.ndarray
      6560 6540
    • nav_lon
      (y, x)
      float32
      dask.array<chunksize=(130, 6560), meta=np.ndarray>
      Array Chunk
      Bytes 163.66 MiB 3.25 MiB
      Shape (6540, 6560) (130, 6560)
      Count 1687 Tasks 55 Chunks
      Type float32 numpy.ndarray
      6560 6540
    • time_centered
      (t)
      object
      dask.array<chunksize=(1,), meta=np.ndarray>
      bounds :
      time_centered_bounds
      long_name :
      Time axis
      standard_name :
      time
      time_origin :
      1900-01-01 00:00:00
      Array Chunk
      Bytes 224 B 8 B
      Shape (28,) (1,)
      Count 29 Tasks 28 Chunks
      Type object numpy.ndarray
      28 1
    • t
      (t)
      object
      2012-02-01 12:00:00 ... 2012-02-...
      axis :
      T
      bounds :
      time_counter_bounds
      long_name :
      Time axis
      standard_name :
      time
      time_origin :
      1900-01-01 00:00:00
      array([cftime.DatetimeNoLeap(2012, 2, 1, 12, 0, 0, 0, has_year_zero=True),
             cftime.DatetimeNoLeap(2012, 2, 2, 12, 0, 0, 0, has_year_zero=True),
             cftime.DatetimeNoLeap(2012, 2, 3, 12, 0, 0, 0, has_year_zero=True),
             cftime.DatetimeNoLeap(2012, 2, 4, 12, 0, 0, 0, has_year_zero=True),
             cftime.DatetimeNoLeap(2012, 2, 5, 12, 0, 0, 0, has_year_zero=True),
             cftime.DatetimeNoLeap(2012, 2, 6, 12, 0, 0, 0, has_year_zero=True),
             cftime.DatetimeNoLeap(2012, 2, 7, 12, 0, 0, 0, has_year_zero=True),
             cftime.DatetimeNoLeap(2012, 2, 8, 12, 0, 0, 0, has_year_zero=True),
             cftime.DatetimeNoLeap(2012, 2, 9, 12, 0, 0, 0, has_year_zero=True),
             cftime.DatetimeNoLeap(2012, 2, 10, 12, 0, 0, 0, has_year_zero=True),
             cftime.DatetimeNoLeap(2012, 2, 11, 12, 0, 0, 0, has_year_zero=True),
             cftime.DatetimeNoLeap(2012, 2, 12, 12, 0, 0, 0, has_year_zero=True),
             cftime.DatetimeNoLeap(2012, 2, 13, 12, 0, 0, 0, has_year_zero=True),
             cftime.DatetimeNoLeap(2012, 2, 14, 12, 0, 0, 0, has_year_zero=True),
             cftime.DatetimeNoLeap(2012, 2, 15, 12, 0, 0, 0, has_year_zero=True),
             cftime.DatetimeNoLeap(2012, 2, 16, 12, 0, 0, 0, has_year_zero=True),
             cftime.DatetimeNoLeap(2012, 2, 17, 12, 0, 0, 0, has_year_zero=True),
             cftime.DatetimeNoLeap(2012, 2, 18, 12, 0, 0, 0, has_year_zero=True),
             cftime.DatetimeNoLeap(2012, 2, 19, 12, 0, 0, 0, has_year_zero=True),
             cftime.DatetimeNoLeap(2012, 2, 20, 12, 0, 0, 0, has_year_zero=True),
             cftime.DatetimeNoLeap(2012, 2, 21, 12, 0, 0, 0, has_year_zero=True),
             cftime.DatetimeNoLeap(2012, 2, 22, 12, 0, 0, 0, has_year_zero=True),
             cftime.DatetimeNoLeap(2012, 2, 23, 12, 0, 0, 0, has_year_zero=True),
             cftime.DatetimeNoLeap(2012, 2, 24, 12, 0, 0, 0, has_year_zero=True),
             cftime.DatetimeNoLeap(2012, 2, 25, 12, 0, 0, 0, has_year_zero=True),
             cftime.DatetimeNoLeap(2012, 2, 26, 12, 0, 0, 0, has_year_zero=True),
             cftime.DatetimeNoLeap(2012, 2, 27, 12, 0, 0, 0, has_year_zero=True),
             cftime.DatetimeNoLeap(2012, 2, 28, 12, 0, 0, 0, has_year_zero=True)],
            dtype=object)
    • y
      (y)
      int64
      1 2 3 4 5 ... 6537 6538 6539 6540
      array([   1,    2,    3, ..., 6538, 6539, 6540])
    • x
      (x)
      int64
      1 2 3 4 5 ... 6557 6558 6559 6560
      array([   1,    2,    3, ..., 6558, 6559, 6560])
    • mask2d
      (y, x)
      bool
      dask.array<chunksize=(130, 6560), meta=np.ndarray>
      Array Chunk
      Bytes 40.91 MiB 832.81 kiB
      Shape (6540, 6560) (130, 6560)
      Count 1687 Tasks 55 Chunks
      Type bool numpy.ndarray
      6560 6540
    • sivolu
      (t, y, x)
      float32
      dask.array<chunksize=(1, 130, 6560), meta=np.ndarray>
      cell_methods :
      time: mean (interval: 40 s)
      interval_operation :
      40 s
      interval_write :
      1 d
      long_name :
      ice volume
      online_operation :
      average
      standard_name :
      sea_ice_thickness
      units :
      m
      Array Chunk
      Bytes 4.48 GiB 3.25 MiB
      Shape (28, 6540, 6560) (1, 130, 6560)
      Count 32548 Tasks 1540 Chunks
      Type float32 numpy.ndarray
      6560 6540 28
  • CASE :
    DELTA
    CONFIG :
    SEDNA
    Conventions :
    CF-1.6
    DOMAIN_dimensions_ids :
    [2, 3]
    DOMAIN_halo_size_end :
    [0, 0]
    DOMAIN_halo_size_start :
    [0, 0]
    DOMAIN_number :
    0
    DOMAIN_number_total :
    544
    DOMAIN_position_first :
    [1, 1]
    DOMAIN_position_last :
    [6560, 13]
    DOMAIN_size_global :
    [6560, 6540]
    DOMAIN_size_local :
    [6560, 13]
    DOMAIN_type :
    box
    NCO :
    netCDF Operators version 4.9.1 (Homepage = http://nco.sf.net, Code = http://github.com/nco/nco)
    description :
    ice variables
    history :
    Wed Jan 19 12:40:39 2022: ncks -4 -L 1 SEDNA-DELTA_1d_icemod_201202-201202_NOZIP_0000.nc /ccc/scratch/cont003/gen7420/talandel/SEDNA/SEDNA-DELTA-S/SPLIT/1d/2012/02/SEDNA-DELTA_1d_icemod_201202-201202_0000.nc Wed Jan 19 12:40:28 2022: ncrcat -n 28,2,1 SEDNA-DELTA_1d_icemod_0000_01.nc SEDNA-DELTA_1d_icemod_201202-201202_NOZIP_0000.nc
    ibegin :
    0
    jbegin :
    0
    name :
    /ccc/scratch/cont003/ra5563/talandel/ONGOING-RUNS/SEDNA-DELTA-XIOS.47/SEDNA-DELTA_1d_icemod
    ni :
    6560
    nj :
    13
    output_frequency :
    1d
    start_date :
    20090101
    timeStamp :
    2022-Jan-18 16:51:17 GMT
    title :
    ice variables
    uuid :
    56b165e2-bdda-4b33-a2e9-04a59f3d06e9
In [7]:
%%time
monitor.auto(df,data,savefig,daskreport,outputpath,file_exp='SEDNA'
            )
#calc= True
#save= True
#plot= False
monitor.optimize_dataset(data)
Value='IceThickness'
Zone='ALL'
Plot='maps'
cmap='Spectral'
clabel='m'
clim= (0, 5)
outputpath='../results/SEDNA_DELTA_MONITOR/'
nc_outputpath='../nc_results/SEDNA_DELTA_MONITOR/'
filename='SEDNA_maps_ALL_IceThickness'
#3 Start computing 
dtaa= (data.sivolu.where(data.sivolu >0)).to_dataset(name='sivolu').chunk({ 't': -1 }).unify_chunks().persist()
monitor.optimize_dataset(dtaa)
<xarray.Dataset>
Dimensions:        (y: 6540, x: 6560, t: 28)
Coordinates:
    nav_lat        (y, x) float32 dask.array<chunksize=(130, 6560), meta=np.ndarray>
    nav_lon        (y, x) float32 dask.array<chunksize=(130, 6560), meta=np.ndarray>
    time_centered  (t) object dask.array<chunksize=(28,), meta=np.ndarray>
  * t              (t) object 2012-02-01 12:00:00 ... 2012-02-28 12:00:00
  * y              (y) int64 1 2 3 4 5 6 7 ... 6535 6536 6537 6538 6539 6540
  * x              (x) int64 1 2 3 4 5 6 7 ... 6555 6556 6557 6558 6559 6560
    mask2d         (y, x) bool dask.array<chunksize=(130, 6560), meta=np.ndarray>
Data variables:
    sivolu         (t, y, x) float32 dask.array<chunksize=(28, 130, 6560), meta=np.ndarray>
xarray.Dataset
    • y: 6540
    • x: 6560
    • t: 28
    • nav_lat
      (y, x)
      float32
      dask.array<chunksize=(130, 6560), meta=np.ndarray>
      Array Chunk
      Bytes 163.66 MiB 3.25 MiB
      Shape (6540, 6560) (130, 6560)
      Count 55 Tasks 55 Chunks
      Type float32 numpy.ndarray
      6560 6540
    • nav_lon
      (y, x)
      float32
      dask.array<chunksize=(130, 6560), meta=np.ndarray>
      Array Chunk
      Bytes 163.66 MiB 3.25 MiB
      Shape (6540, 6560) (130, 6560)
      Count 55 Tasks 55 Chunks
      Type float32 numpy.ndarray
      6560 6540
    • time_centered
      (t)
      object
      dask.array<chunksize=(28,), meta=np.ndarray>
      bounds :
      time_centered_bounds
      long_name :
      Time axis
      standard_name :
      time
      time_origin :
      1900-01-01 00:00:00
      Array Chunk
      Bytes 224 B 224 B
      Shape (28,) (28,)
      Count 1 Tasks 1 Chunks
      Type object numpy.ndarray
      28 1
    • t
      (t)
      object
      2012-02-01 12:00:00 ... 2012-02-...
      axis :
      T
      bounds :
      time_counter_bounds
      long_name :
      Time axis
      standard_name :
      time
      time_origin :
      1900-01-01 00:00:00
      array([cftime.DatetimeNoLeap(2012, 2, 1, 12, 0, 0, 0, has_year_zero=True),
             cftime.DatetimeNoLeap(2012, 2, 2, 12, 0, 0, 0, has_year_zero=True),
             cftime.DatetimeNoLeap(2012, 2, 3, 12, 0, 0, 0, has_year_zero=True),
             cftime.DatetimeNoLeap(2012, 2, 4, 12, 0, 0, 0, has_year_zero=True),
             cftime.DatetimeNoLeap(2012, 2, 5, 12, 0, 0, 0, has_year_zero=True),
             cftime.DatetimeNoLeap(2012, 2, 6, 12, 0, 0, 0, has_year_zero=True),
             cftime.DatetimeNoLeap(2012, 2, 7, 12, 0, 0, 0, has_year_zero=True),
             cftime.DatetimeNoLeap(2012, 2, 8, 12, 0, 0, 0, has_year_zero=True),
             cftime.DatetimeNoLeap(2012, 2, 9, 12, 0, 0, 0, has_year_zero=True),
             cftime.DatetimeNoLeap(2012, 2, 10, 12, 0, 0, 0, has_year_zero=True),
             cftime.DatetimeNoLeap(2012, 2, 11, 12, 0, 0, 0, has_year_zero=True),
             cftime.DatetimeNoLeap(2012, 2, 12, 12, 0, 0, 0, has_year_zero=True),
             cftime.DatetimeNoLeap(2012, 2, 13, 12, 0, 0, 0, has_year_zero=True),
             cftime.DatetimeNoLeap(2012, 2, 14, 12, 0, 0, 0, has_year_zero=True),
             cftime.DatetimeNoLeap(2012, 2, 15, 12, 0, 0, 0, has_year_zero=True),
             cftime.DatetimeNoLeap(2012, 2, 16, 12, 0, 0, 0, has_year_zero=True),
             cftime.DatetimeNoLeap(2012, 2, 17, 12, 0, 0, 0, has_year_zero=True),
             cftime.DatetimeNoLeap(2012, 2, 18, 12, 0, 0, 0, has_year_zero=True),
             cftime.DatetimeNoLeap(2012, 2, 19, 12, 0, 0, 0, has_year_zero=True),
             cftime.DatetimeNoLeap(2012, 2, 20, 12, 0, 0, 0, has_year_zero=True),
             cftime.DatetimeNoLeap(2012, 2, 21, 12, 0, 0, 0, has_year_zero=True),
             cftime.DatetimeNoLeap(2012, 2, 22, 12, 0, 0, 0, has_year_zero=True),
             cftime.DatetimeNoLeap(2012, 2, 23, 12, 0, 0, 0, has_year_zero=True),
             cftime.DatetimeNoLeap(2012, 2, 24, 12, 0, 0, 0, has_year_zero=True),
             cftime.DatetimeNoLeap(2012, 2, 25, 12, 0, 0, 0, has_year_zero=True),
             cftime.DatetimeNoLeap(2012, 2, 26, 12, 0, 0, 0, has_year_zero=True),
             cftime.DatetimeNoLeap(2012, 2, 27, 12, 0, 0, 0, has_year_zero=True),
             cftime.DatetimeNoLeap(2012, 2, 28, 12, 0, 0, 0, has_year_zero=True)],
            dtype=object)
    • y
      (y)
      int64
      1 2 3 4 5 ... 6537 6538 6539 6540
      array([   1,    2,    3, ..., 6538, 6539, 6540])
    • x
      (x)
      int64
      1 2 3 4 5 ... 6557 6558 6559 6560
      array([   1,    2,    3, ..., 6558, 6559, 6560])
    • mask2d
      (y, x)
      bool
      dask.array<chunksize=(130, 6560), meta=np.ndarray>
      Array Chunk
      Bytes 40.91 MiB 832.81 kiB
      Shape (6540, 6560) (130, 6560)
      Count 55 Tasks 55 Chunks
      Type bool numpy.ndarray
      6560 6540
    • sivolu
      (t, y, x)
      float32
      dask.array<chunksize=(28, 130, 6560), meta=np.ndarray>
      cell_methods :
      time: mean (interval: 40 s)
      interval_operation :
      40 s
      interval_write :
      1 d
      long_name :
      ice volume
      online_operation :
      average
      standard_name :
      sea_ice_thickness
      units :
      m
      Array Chunk
      Bytes 4.48 GiB 91.09 MiB
      Shape (28, 6540, 6560) (28, 130, 6560)
      Count 55 Tasks 55 Chunks
      Type float32 numpy.ndarray
      6560 6540 28
#4 Saving  SEDNA_maps_ALL_IceThickness
dtaa=save.datas(data,plot=Plot,path=nc_outputpath,filename=filename)
start saving data
saving data in a file
---------------------------------------------------------------------------
UnboundLocalError                         Traceback (most recent call last)
File <timed eval>:1, in <module>

File /ccc/work/cont003/gen7420/odakatin/monitor-sedna/notebook/core/monitor.py:84, in auto(df, val, savefig, daskreport, outputpath, file_exp)
     82         print('dtaa=save.datas(data,plot=Plot,path=nc_outputpath,filename=filename)' )
     83         with performance_report(filename=daskreport+"_save_"+step.Value+".html"):
---> 84             save.datas(data,plot=Plot,path=nc_outputpath,filename=filename)                
     85 # 5. Plot       
     86     if plotswitch=='True': 

File /ccc/work/cont003/gen7420/odakatin/monitor-sedna/notebook/core/save.py:24, in datas(data, plot, path, filename)
     22     twoD(data,path,filename,nested=False)
     23 else :
---> 24     twoD(data,path,filename)
     25 return None

File /ccc/work/cont003/gen7420/odakatin/monitor-sedna/notebook/core/save.py:57, in twoD(data, path, filename, nested)
     55 print('saving data in a file')
     56 filesave=path+filename  
---> 57 return to_mfnetcdf_map(data,prefix=filesave, nested=nested)

File /ccc/work/cont003/gen7420/odakatin/monitor-sedna/notebook/core/save.py:219, in to_mfnetcdf_map(ds, prefix, nested)
    217             slices.append(slice(start, stop))
    218             start = stop
--> 219     chunk_slices[dim] = slices
    220 for i in chunk_slices['t']:
    221     print(i)

UnboundLocalError: local variable 'slices' referenced before assignment