%matplotlib inline
import pandas as pd
import socket
host = socket.getfqdn()
from core import load, zoom, calc, save,plots,monitor
#reload funcs after updating ./core/*.py
import importlib
importlib.reload(load)
importlib.reload(zoom)
importlib.reload(calc)
importlib.reload(save)
importlib.reload(plots)
importlib.reload(monitor)
<module 'core.monitor' from '/ccc/work/cont003/gen7420/odakatin/monitor-sedna/notebook/core/monitor.py'>
# 'month': = 'JOBID' almost month but not really,
# If you submit the job with job scheduler, above
#below are list of enviroment variable one can pass
#%env local='2"
# local : if True run dask local cluster, if not true, put number of workers
# setted in the 'local'
# if no 'local ' given, local will be setted automatically to 'True'
#%env ychunk='2'
#%env tchunk='2'
# controls chunk. 'False' sets no modification from original netcdf file's chunk.
# ychunk=10 will group the original netcdf file to 10 by 10
# tchunk=1 will chunk the time coordinate one by one
#%env control=FWC_SSH
# name of control file to be used for computation/plots/save/
#%env file_exp=
# 'file_exp': Which 'experiment' name is it?
#. this corresopnds to intake catalog name without path and .yaml
#%env year=
# for Validation, this correspoinds to path/year/month 's year
# for monitoring, this corresponids to 'date' having * means do all files in the monitoring directory
# setting it as *0[0-9] &*1[0-9]& *[2-3][0-9], the job can be separated in three lots.
#%env month=
# for monitoring this corresponds to file path path-XIOS.{month}/
#
#%env save= proceed saving? True or False , Default is setted as True
#%env plot= proceed plotting? True or False , Default is setted as True
#%env calc= proceed computation? or just load computed result? True or False , Default is setted as True
#%env save=False
%%time
# 'savefig': Do we save output in html? or not. keep it true.
savefig=True
client,cluster,control,catalog_url,month,year,daskreport,outputpath = load.set_control(host)
!mkdir -p $outputpath
!mkdir -p $daskreport
client
local True using host= irene5338.c-irene.mg1.tgcc.ccc.cea.fr starting dask cluster on local= True workers 16 10000000000 False not local in tgcc rome local cluster starting This code is running on irene5338.c-irene.mg1.tgcc.ccc.cea.fr using SEDNA_DELTA_MONITOR file experiment, read from ../lib/SEDNA_DELTA_MONITOR.yaml on year= 2012 on month= 02 outputpath= ../results/SEDNA_DELTA_MONITOR/ daskreport= ../results/dask/6253274irene5338.c-irene.mg1.tgcc.ccc.cea.fr_SEDNA_DELTA_MONITOR_02M_Ice_quantities/ CPU times: user 374 ms, sys: 224 ms, total: 598 ms Wall time: 11.6 s
Client
|
Cluster
|
df=load.controlfile(control)
#Take out 'later' tagged computations
#df=df[~df['Value'].str.contains('later')]
df
Value | Inputs | Equation | Zone | Plot | Colourmap | MinMax | Unit | Oldname | Unnamed: 10 | |
---|---|---|---|---|---|---|---|---|---|---|
Ice_quantities | param.e1te2t,icemod.sivelo,icemod.sivolu,icemo... | calc.Ice_quant(data) | ALL | Ice_intquant | None | (0,20) | cm s^(-1) | I-2 |
Each computation consists of
%%time
import os
calcswitch=os.environ.get('calc', 'True')
loaddata=((df.Inputs != '').any())
print('calcswitch=',calcswitch,'df.Inputs != nothing',loaddata)
data = load.datas(catalog_url,df.Inputs,month,year,daskreport) if ((calcswitch=='True' )*loaddata) else 0
data
calcswitch= False df.Inputs != nothing True CPU times: user 508 µs, sys: 0 ns, total: 508 µs Wall time: 454 µs
0
%%time
monitor.auto(df,data,savefig,daskreport,outputpath,file_exp='SEDNA'
)
#calc= False #save= False #plot= True Zone='ALL' Value='Ice_quantities' cmap='None' clabel='cm s^(-1)' clim= (0, 20) outputpath='../results/SEDNA_DELTA_MONITOR/' nc_outputpath='../nc_results/SEDNA_DELTA_MONITOR/' filename='SEDNA_Ice_intquant_ALL_Ice_quantities' #3 no computing , loading starts dtaa=save.load_data(plot=Plot,path=nc_outputpath,filename=filename) start saving data load 1Dnc file from ../nc_results/SEDNA_DELTA_MONITOR/../*/SEDNA_Ice_intquant_ALL_Ice_quantities*.nc load computed data completed
<xarray.Dataset> Dimensions: (t: 59) Coordinates: * t (t) object 2012-01-01 12:00:00 ... 2012-02-28 12:00:00 Data variables: Ice volume (t) float64 dask.array<chunksize=(31,), meta=np.ndarray> Ice area (t) float64 dask.array<chunksize=(31,), meta=np.ndarray> Ice extent (t) float64 dask.array<chunksize=(31,), meta=np.ndarray> Ice drift (t) float64 dask.array<chunksize=(31,), meta=np.ndarray>
array([cftime.DatetimeNoLeap(2012, 1, 1, 12, 0, 0, 0), cftime.DatetimeNoLeap(2012, 1, 2, 12, 0, 0, 0), cftime.DatetimeNoLeap(2012, 1, 3, 12, 0, 0, 0), cftime.DatetimeNoLeap(2012, 1, 4, 12, 0, 0, 0), cftime.DatetimeNoLeap(2012, 1, 5, 12, 0, 0, 0), cftime.DatetimeNoLeap(2012, 1, 6, 12, 0, 0, 0), cftime.DatetimeNoLeap(2012, 1, 7, 12, 0, 0, 0), cftime.DatetimeNoLeap(2012, 1, 8, 12, 0, 0, 0), cftime.DatetimeNoLeap(2012, 1, 9, 12, 0, 0, 0), cftime.DatetimeNoLeap(2012, 1, 10, 12, 0, 0, 0), cftime.DatetimeNoLeap(2012, 1, 11, 12, 0, 0, 0), cftime.DatetimeNoLeap(2012, 1, 12, 12, 0, 0, 0), cftime.DatetimeNoLeap(2012, 1, 13, 12, 0, 0, 0), cftime.DatetimeNoLeap(2012, 1, 14, 12, 0, 0, 0), cftime.DatetimeNoLeap(2012, 1, 15, 12, 0, 0, 0), cftime.DatetimeNoLeap(2012, 1, 16, 12, 0, 0, 0), cftime.DatetimeNoLeap(2012, 1, 17, 12, 0, 0, 0), cftime.DatetimeNoLeap(2012, 1, 18, 12, 0, 0, 0), cftime.DatetimeNoLeap(2012, 1, 19, 12, 0, 0, 0), cftime.DatetimeNoLeap(2012, 1, 20, 12, 0, 0, 0), cftime.DatetimeNoLeap(2012, 1, 21, 12, 0, 0, 0), cftime.DatetimeNoLeap(2012, 1, 22, 12, 0, 0, 0), cftime.DatetimeNoLeap(2012, 1, 23, 12, 0, 0, 0), cftime.DatetimeNoLeap(2012, 1, 24, 12, 0, 0, 0), cftime.DatetimeNoLeap(2012, 1, 25, 12, 0, 0, 0), cftime.DatetimeNoLeap(2012, 1, 26, 12, 0, 0, 0), cftime.DatetimeNoLeap(2012, 1, 27, 12, 0, 0, 0), cftime.DatetimeNoLeap(2012, 1, 28, 12, 0, 0, 0), cftime.DatetimeNoLeap(2012, 1, 29, 12, 0, 0, 0), cftime.DatetimeNoLeap(2012, 1, 30, 12, 0, 0, 0), cftime.DatetimeNoLeap(2012, 1, 31, 12, 0, 0, 0), cftime.DatetimeNoLeap(2012, 2, 1, 12, 0, 0, 0), cftime.DatetimeNoLeap(2012, 2, 2, 12, 0, 0, 0), cftime.DatetimeNoLeap(2012, 2, 3, 12, 0, 0, 0), cftime.DatetimeNoLeap(2012, 2, 4, 12, 0, 0, 0), cftime.DatetimeNoLeap(2012, 2, 5, 12, 0, 0, 0), cftime.DatetimeNoLeap(2012, 2, 6, 12, 0, 0, 0), cftime.DatetimeNoLeap(2012, 2, 7, 12, 0, 0, 0), cftime.DatetimeNoLeap(2012, 2, 8, 12, 0, 0, 0), cftime.DatetimeNoLeap(2012, 2, 9, 12, 0, 0, 0), cftime.DatetimeNoLeap(2012, 2, 10, 12, 0, 0, 0), cftime.DatetimeNoLeap(2012, 2, 11, 12, 0, 0, 0), cftime.DatetimeNoLeap(2012, 2, 12, 12, 0, 0, 0), cftime.DatetimeNoLeap(2012, 2, 13, 12, 0, 0, 0), cftime.DatetimeNoLeap(2012, 2, 14, 12, 0, 0, 0), cftime.DatetimeNoLeap(2012, 2, 15, 12, 0, 0, 0), cftime.DatetimeNoLeap(2012, 2, 16, 12, 0, 0, 0), cftime.DatetimeNoLeap(2012, 2, 17, 12, 0, 0, 0), cftime.DatetimeNoLeap(2012, 2, 18, 12, 0, 0, 0), cftime.DatetimeNoLeap(2012, 2, 19, 12, 0, 0, 0), cftime.DatetimeNoLeap(2012, 2, 20, 12, 0, 0, 0), cftime.DatetimeNoLeap(2012, 2, 21, 12, 0, 0, 0), cftime.DatetimeNoLeap(2012, 2, 22, 12, 0, 0, 0), cftime.DatetimeNoLeap(2012, 2, 23, 12, 0, 0, 0), cftime.DatetimeNoLeap(2012, 2, 24, 12, 0, 0, 0), cftime.DatetimeNoLeap(2012, 2, 25, 12, 0, 0, 0), cftime.DatetimeNoLeap(2012, 2, 26, 12, 0, 0, 0), cftime.DatetimeNoLeap(2012, 2, 27, 12, 0, 0, 0), cftime.DatetimeNoLeap(2012, 2, 28, 12, 0, 0, 0)], dtype=object)
|
|
|
|
#5 Plotting filename= plots.Ice_intquant(data,path=outputpath,filename=filename,save=savefig,cmap=cmap,clim=clim,clabel=clabel)
WARNING:param.CurvePlot03598: Converting cftime.datetime from a non-standard calendar (noleap) to a standard calendar for plotting. This may lead to subtle errors in formatting dates, for accurate tick formatting switch to the matplotlib backend. WARNING:param.CurvePlot03629: Converting cftime.datetime from a non-standard calendar (noleap) to a standard calendar for plotting. This may lead to subtle errors in formatting dates, for accurate tick formatting switch to the matplotlib backend. WARNING:param.CurvePlot03659: Converting cftime.datetime from a non-standard calendar (noleap) to a standard calendar for plotting. This may lead to subtle errors in formatting dates, for accurate tick formatting switch to the matplotlib backend. WARNING:param.CurvePlot03689: Converting cftime.datetime from a non-standard calendar (noleap) to a standard calendar for plotting. This may lead to subtle errors in formatting dates, for accurate tick formatting switch to the matplotlib backend.
../results/SEDNA_DELTA_MONITOR/SEDNA_Ice_intquant_ALL_Ice_quantities_20120101-20120228.html starts plotting plotting ../results/SEDNA_DELTA_MONITOR/SEDNA_Ice_intquant_ALL_Ice_quantities_20120101-20120228.html ../results/SEDNA_DELTA_MONITOR/SEDNA_Ice_intquant_ALL_Ice_quantities_20120101-20120228.html created
CPU times: user 1.25 s, sys: 274 ms, total: 1.53 s Wall time: 5.14 s