In [1]:
%matplotlib inline
import pandas as pd
import socket
host = socket.getfqdn()

from core import  load, zoom, calc, save,plots,monitor
In [2]:
#reload funcs after updating ./core/*.py
import importlib
importlib.reload(load)
importlib.reload(zoom)
importlib.reload(calc)
importlib.reload(save)
importlib.reload(plots)
importlib.reload(monitor)
Out[2]:
<module 'core.monitor' from '/ccc/work/cont003/gen7420/odakatin/monitor-sedna/notebook/core/monitor.py'>

If you submit the job with job scheduler, above¶

below are list of enviroment variable one can pass

%env local='2"¶

local : if True run dask local cluster, if not true, put number of workers setted in the 'local' if no 'local ' given, local will be setted automatically to 'True'

%env ychunk='2'¶

%env tchunk='2'¶

controls chunk. 'False' sets no modification from original netcdf file's chunk.¶

ychunk=10 will group the original netcdf file to 10 by 10¶

tchunk=1 will chunk the time coordinate one by one¶

%env file_exp=¶

'file_exp': Which 'experiment' name is it?¶

. this corresopnds to intake catalog name without path and .yaml¶

%env year=¶

for Validation, this correspoinds to path/year/month 's year¶

for monitoring, this corresponids to 'date' having * means do all files in the monitoring directory¶

setting it as 0[0-9] &1[0-9]& *[2-3][0-9], the job can be separated in three lots.¶

%env month=¶

for monitoring this corresponds to file path path-XIOS.{month}/¶

#

%env control=FWC_SSH¶

name of control file to be used for computation/plots/save/ & how it is called from Monitor.sh¶

Monitor.sh calls M_MLD_2D

and AWTD.sh, Fluxnet.sh, Siconc.sh, IceClim.sh, FWC_SSH.sh

  • AWTD.sh M_AWTMD

  • Fluxnet.sh M_Fluxnet

  • Siconc.sh M_Ice_quantities
  • IceClim.sh M_IceClim M_IceConce M_IceThick

FWC_SSH.sh M_FWC_2D M_FWC_integrals M_FWC_SSH M_SSH_anomaly

M_Mean_temp_velo

M_Mooring M_Sectionx M_Sectiony

%env save= proceed saving? True or False , Default is setted as True¶

%env plot= proceed plotting? True or False , Default is setted as True¶

%env calc= proceed computation? or just load computed result? True or False , Default is setted as True¶

%env save=False¶

%env lazy=False¶

For debugging this cell can help¶

%env file_exp=SEDNA_DELTA_MONITOR %env year=2012 %env month=01

0[1-2]¶

%env ychunk=10 %env ychunk=False %env save=False %env plot=True %env calc=True # %env lazy=False

False¶

%env control=M_Fluxnet

M_Sectiony ok with ychunk=False local=True lazy=False¶

In [3]:
%%time
# 'savefig': Do we save output in html? or not. keep it true. 
savefig=True
client,cluster,control,catalog_url,month,year,daskreport,outputpath = load.set_control(host)
!mkdir -p $outputpath
!mkdir -p $daskreport
client
local True
using host= irene5634.c-irene.mg1.tgcc.ccc.cea.fr starting dask cluster on local= True
This code is running on  irene5634.c-irene.mg1.tgcc.ccc.cea.fr using  SEDNA_DELTA_MONITOR file experiment, read from  ../lib/SEDNA_DELTA_MONITOR.yaml  on year= 2012  on month= 02  outputpath= ../results/SEDNA_DELTA_MONITOR/ daskreport= ../results/dask/6418609irene5634.c-irene.mg1.tgcc.ccc.cea.fr_SEDNA_DELTA_MONITOR_02M_Ice_quantities/
CPU times: user 4 s, sys: 719 ms, total: 4.72 s
Wall time: 1min 40s
Out[3]:

Client

Client-aaab4dfc-13d3-11ed-948a-080038b94275

Connection method: Cluster object Cluster type: distributed.LocalCluster
Dashboard: http://127.0.0.1:8787/status

Cluster Info

LocalCluster

b3f08b2d

Dashboard: http://127.0.0.1:8787/status Workers: 64
Total threads: 256 Total memory: 251.06 GiB
Status: running Using processes: True

Scheduler Info

Scheduler

Scheduler-abc3f591-f3ed-41a3-ae9b-76b31ea80f99

Comm: tcp://127.0.0.1:36421 Workers: 64
Dashboard: http://127.0.0.1:8787/status Total threads: 256
Started: 1 minute ago Total memory: 251.06 GiB

Workers

Worker: 0

Comm: tcp://127.0.0.1:45811 Total threads: 4
Dashboard: http://127.0.0.1:32933/status Memory: 3.92 GiB
Nanny: tcp://127.0.0.1:37390
Local directory: /tmp/dask-worker-space/worker-esfxpk3i

Worker: 1

Comm: tcp://127.0.0.1:36836 Total threads: 4
Dashboard: http://127.0.0.1:41737/status Memory: 3.92 GiB
Nanny: tcp://127.0.0.1:34358
Local directory: /tmp/dask-worker-space/worker-vj55f0b_

Worker: 2

Comm: tcp://127.0.0.1:46106 Total threads: 4
Dashboard: http://127.0.0.1:33323/status Memory: 3.92 GiB
Nanny: tcp://127.0.0.1:43776
Local directory: /tmp/dask-worker-space/worker-rruji9na

Worker: 3

Comm: tcp://127.0.0.1:38565 Total threads: 4
Dashboard: http://127.0.0.1:44314/status Memory: 3.92 GiB
Nanny: tcp://127.0.0.1:38894
Local directory: /tmp/dask-worker-space/worker-p437dhnw

Worker: 4

Comm: tcp://127.0.0.1:46810 Total threads: 4
Dashboard: http://127.0.0.1:42279/status Memory: 3.92 GiB
Nanny: tcp://127.0.0.1:41960
Local directory: /tmp/dask-worker-space/worker-5z6lp14s

Worker: 5

Comm: tcp://127.0.0.1:46561 Total threads: 4
Dashboard: http://127.0.0.1:39396/status Memory: 3.92 GiB
Nanny: tcp://127.0.0.1:35261
Local directory: /tmp/dask-worker-space/worker-jsj_3gg6

Worker: 6

Comm: tcp://127.0.0.1:43757 Total threads: 4
Dashboard: http://127.0.0.1:45982/status Memory: 3.92 GiB
Nanny: tcp://127.0.0.1:45955
Local directory: /tmp/dask-worker-space/worker-_u00_oyl

Worker: 7

Comm: tcp://127.0.0.1:41622 Total threads: 4
Dashboard: http://127.0.0.1:37762/status Memory: 3.92 GiB
Nanny: tcp://127.0.0.1:46238
Local directory: /tmp/dask-worker-space/worker-97rx7lc8

Worker: 8

Comm: tcp://127.0.0.1:41024 Total threads: 4
Dashboard: http://127.0.0.1:35344/status Memory: 3.92 GiB
Nanny: tcp://127.0.0.1:42078
Local directory: /tmp/dask-worker-space/worker-erkr3ztv

Worker: 9

Comm: tcp://127.0.0.1:38231 Total threads: 4
Dashboard: http://127.0.0.1:41681/status Memory: 3.92 GiB
Nanny: tcp://127.0.0.1:39417
Local directory: /tmp/dask-worker-space/worker-kvpcswa6

Worker: 10

Comm: tcp://127.0.0.1:37447 Total threads: 4
Dashboard: http://127.0.0.1:39426/status Memory: 3.92 GiB
Nanny: tcp://127.0.0.1:41821
Local directory: /tmp/dask-worker-space/worker-71p_zgmv

Worker: 11

Comm: tcp://127.0.0.1:42204 Total threads: 4
Dashboard: http://127.0.0.1:37827/status Memory: 3.92 GiB
Nanny: tcp://127.0.0.1:45321
Local directory: /tmp/dask-worker-space/worker-ooew9q9b

Worker: 12

Comm: tcp://127.0.0.1:46596 Total threads: 4
Dashboard: http://127.0.0.1:43805/status Memory: 3.92 GiB
Nanny: tcp://127.0.0.1:35122
Local directory: /tmp/dask-worker-space/worker-wcldsvmi

Worker: 13

Comm: tcp://127.0.0.1:42152 Total threads: 4
Dashboard: http://127.0.0.1:39406/status Memory: 3.92 GiB
Nanny: tcp://127.0.0.1:34402
Local directory: /tmp/dask-worker-space/worker-il6341ru

Worker: 14

Comm: tcp://127.0.0.1:37550 Total threads: 4
Dashboard: http://127.0.0.1:33061/status Memory: 3.92 GiB
Nanny: tcp://127.0.0.1:44962
Local directory: /tmp/dask-worker-space/worker-lpte1sb8

Worker: 15

Comm: tcp://127.0.0.1:33252 Total threads: 4
Dashboard: http://127.0.0.1:39026/status Memory: 3.92 GiB
Nanny: tcp://127.0.0.1:34845
Local directory: /tmp/dask-worker-space/worker-52n4kdkq

Worker: 16

Comm: tcp://127.0.0.1:41588 Total threads: 4
Dashboard: http://127.0.0.1:33683/status Memory: 3.92 GiB
Nanny: tcp://127.0.0.1:46469
Local directory: /tmp/dask-worker-space/worker-5zql6k9b

Worker: 17

Comm: tcp://127.0.0.1:35002 Total threads: 4
Dashboard: http://127.0.0.1:38757/status Memory: 3.92 GiB
Nanny: tcp://127.0.0.1:36080
Local directory: /tmp/dask-worker-space/worker-s10f0dq0

Worker: 18

Comm: tcp://127.0.0.1:45422 Total threads: 4
Dashboard: http://127.0.0.1:39253/status Memory: 3.92 GiB
Nanny: tcp://127.0.0.1:35260
Local directory: /tmp/dask-worker-space/worker-oi352a5t

Worker: 19

Comm: tcp://127.0.0.1:44275 Total threads: 4
Dashboard: http://127.0.0.1:39124/status Memory: 3.92 GiB
Nanny: tcp://127.0.0.1:45332
Local directory: /tmp/dask-worker-space/worker-nymqfms7

Worker: 20

Comm: tcp://127.0.0.1:34463 Total threads: 4
Dashboard: http://127.0.0.1:44302/status Memory: 3.92 GiB
Nanny: tcp://127.0.0.1:39615
Local directory: /tmp/dask-worker-space/worker-s977z6gu

Worker: 21

Comm: tcp://127.0.0.1:34667 Total threads: 4
Dashboard: http://127.0.0.1:40291/status Memory: 3.92 GiB
Nanny: tcp://127.0.0.1:41579
Local directory: /tmp/dask-worker-space/worker-1vb9v2ca

Worker: 22

Comm: tcp://127.0.0.1:45716 Total threads: 4
Dashboard: http://127.0.0.1:42428/status Memory: 3.92 GiB
Nanny: tcp://127.0.0.1:40099
Local directory: /tmp/dask-worker-space/worker-z42fjir3

Worker: 23

Comm: tcp://127.0.0.1:35207 Total threads: 4
Dashboard: http://127.0.0.1:34561/status Memory: 3.92 GiB
Nanny: tcp://127.0.0.1:44873
Local directory: /tmp/dask-worker-space/worker-2awaxrqe

Worker: 24

Comm: tcp://127.0.0.1:42546 Total threads: 4
Dashboard: http://127.0.0.1:44339/status Memory: 3.92 GiB
Nanny: tcp://127.0.0.1:39912
Local directory: /tmp/dask-worker-space/worker-2r60rhdy

Worker: 25

Comm: tcp://127.0.0.1:41732 Total threads: 4
Dashboard: http://127.0.0.1:41791/status Memory: 3.92 GiB
Nanny: tcp://127.0.0.1:41822
Local directory: /tmp/dask-worker-space/worker-xcy43j2m

Worker: 26

Comm: tcp://127.0.0.1:38257 Total threads: 4
Dashboard: http://127.0.0.1:35701/status Memory: 3.92 GiB
Nanny: tcp://127.0.0.1:42060
Local directory: /tmp/dask-worker-space/worker-ezgvssur

Worker: 27

Comm: tcp://127.0.0.1:39477 Total threads: 4
Dashboard: http://127.0.0.1:35507/status Memory: 3.92 GiB
Nanny: tcp://127.0.0.1:40565
Local directory: /tmp/dask-worker-space/worker-ijnzwkw5

Worker: 28

Comm: tcp://127.0.0.1:35104 Total threads: 4
Dashboard: http://127.0.0.1:36909/status Memory: 3.92 GiB
Nanny: tcp://127.0.0.1:37786
Local directory: /tmp/dask-worker-space/worker-dvzurv3v

Worker: 29

Comm: tcp://127.0.0.1:43176 Total threads: 4
Dashboard: http://127.0.0.1:41032/status Memory: 3.92 GiB
Nanny: tcp://127.0.0.1:40928
Local directory: /tmp/dask-worker-space/worker-6n_il307

Worker: 30

Comm: tcp://127.0.0.1:43274 Total threads: 4
Dashboard: http://127.0.0.1:36795/status Memory: 3.92 GiB
Nanny: tcp://127.0.0.1:39662
Local directory: /tmp/dask-worker-space/worker-c7m3q_10

Worker: 31

Comm: tcp://127.0.0.1:33834 Total threads: 4
Dashboard: http://127.0.0.1:46873/status Memory: 3.92 GiB
Nanny: tcp://127.0.0.1:37363
Local directory: /tmp/dask-worker-space/worker-agua_tyj

Worker: 32

Comm: tcp://127.0.0.1:35311 Total threads: 4
Dashboard: http://127.0.0.1:42720/status Memory: 3.92 GiB
Nanny: tcp://127.0.0.1:34274
Local directory: /tmp/dask-worker-space/worker-z96wdw0b

Worker: 33

Comm: tcp://127.0.0.1:46162 Total threads: 4
Dashboard: http://127.0.0.1:33800/status Memory: 3.92 GiB
Nanny: tcp://127.0.0.1:44978
Local directory: /tmp/dask-worker-space/worker-cdf09lgy

Worker: 34

Comm: tcp://127.0.0.1:43576 Total threads: 4
Dashboard: http://127.0.0.1:46613/status Memory: 3.92 GiB
Nanny: tcp://127.0.0.1:42613
Local directory: /tmp/dask-worker-space/worker-a3tll3lv

Worker: 35

Comm: tcp://127.0.0.1:43718 Total threads: 4
Dashboard: http://127.0.0.1:41221/status Memory: 3.92 GiB
Nanny: tcp://127.0.0.1:46479
Local directory: /tmp/dask-worker-space/worker-ry6m5rd7

Worker: 36

Comm: tcp://127.0.0.1:41729 Total threads: 4
Dashboard: http://127.0.0.1:45123/status Memory: 3.92 GiB
Nanny: tcp://127.0.0.1:41399
Local directory: /tmp/dask-worker-space/worker-04xgc352

Worker: 37

Comm: tcp://127.0.0.1:34140 Total threads: 4
Dashboard: http://127.0.0.1:35915/status Memory: 3.92 GiB
Nanny: tcp://127.0.0.1:35727
Local directory: /tmp/dask-worker-space/worker-r_mxswku

Worker: 38

Comm: tcp://127.0.0.1:36984 Total threads: 4
Dashboard: http://127.0.0.1:45728/status Memory: 3.92 GiB
Nanny: tcp://127.0.0.1:35811
Local directory: /tmp/dask-worker-space/worker-1x85vjhn

Worker: 39

Comm: tcp://127.0.0.1:35778 Total threads: 4
Dashboard: http://127.0.0.1:44000/status Memory: 3.92 GiB
Nanny: tcp://127.0.0.1:44656
Local directory: /tmp/dask-worker-space/worker-wtk95cw_

Worker: 40

Comm: tcp://127.0.0.1:40802 Total threads: 4
Dashboard: http://127.0.0.1:40656/status Memory: 3.92 GiB
Nanny: tcp://127.0.0.1:35020
Local directory: /tmp/dask-worker-space/worker-fhci6pz3

Worker: 41

Comm: tcp://127.0.0.1:40223 Total threads: 4
Dashboard: http://127.0.0.1:36796/status Memory: 3.92 GiB
Nanny: tcp://127.0.0.1:35247
Local directory: /tmp/dask-worker-space/worker-5ocancfr

Worker: 42

Comm: tcp://127.0.0.1:39530 Total threads: 4
Dashboard: http://127.0.0.1:37793/status Memory: 3.92 GiB
Nanny: tcp://127.0.0.1:32944
Local directory: /tmp/dask-worker-space/worker-68y4_txk

Worker: 43

Comm: tcp://127.0.0.1:46381 Total threads: 4
Dashboard: http://127.0.0.1:37644/status Memory: 3.92 GiB
Nanny: tcp://127.0.0.1:38608
Local directory: /tmp/dask-worker-space/worker-6wpq8_9j

Worker: 44

Comm: tcp://127.0.0.1:45401 Total threads: 4
Dashboard: http://127.0.0.1:37761/status Memory: 3.92 GiB
Nanny: tcp://127.0.0.1:39266
Local directory: /tmp/dask-worker-space/worker-qhvl2lok

Worker: 45

Comm: tcp://127.0.0.1:45904 Total threads: 4
Dashboard: http://127.0.0.1:37660/status Memory: 3.92 GiB
Nanny: tcp://127.0.0.1:38515
Local directory: /tmp/dask-worker-space/worker-5wjfbyiw

Worker: 46

Comm: tcp://127.0.0.1:44965 Total threads: 4
Dashboard: http://127.0.0.1:34994/status Memory: 3.92 GiB
Nanny: tcp://127.0.0.1:39347
Local directory: /tmp/dask-worker-space/worker-k9gt0ix4

Worker: 47

Comm: tcp://127.0.0.1:35210 Total threads: 4
Dashboard: http://127.0.0.1:40628/status Memory: 3.92 GiB
Nanny: tcp://127.0.0.1:34718
Local directory: /tmp/dask-worker-space/worker-ci1iuwdo

Worker: 48

Comm: tcp://127.0.0.1:43635 Total threads: 4
Dashboard: http://127.0.0.1:34263/status Memory: 3.92 GiB
Nanny: tcp://127.0.0.1:40195
Local directory: /tmp/dask-worker-space/worker-dy6u2_71

Worker: 49

Comm: tcp://127.0.0.1:40246 Total threads: 4
Dashboard: http://127.0.0.1:35123/status Memory: 3.92 GiB
Nanny: tcp://127.0.0.1:34525
Local directory: /tmp/dask-worker-space/worker-qbv6r08m

Worker: 50

Comm: tcp://127.0.0.1:39035 Total threads: 4
Dashboard: http://127.0.0.1:38301/status Memory: 3.92 GiB
Nanny: tcp://127.0.0.1:44844
Local directory: /tmp/dask-worker-space/worker-xw5ms0m8

Worker: 51

Comm: tcp://127.0.0.1:39868 Total threads: 4
Dashboard: http://127.0.0.1:46830/status Memory: 3.92 GiB
Nanny: tcp://127.0.0.1:32849
Local directory: /tmp/dask-worker-space/worker-008cwn6j

Worker: 52

Comm: tcp://127.0.0.1:34876 Total threads: 4
Dashboard: http://127.0.0.1:46298/status Memory: 3.92 GiB
Nanny: tcp://127.0.0.1:39252
Local directory: /tmp/dask-worker-space/worker-rwt3hvis

Worker: 53

Comm: tcp://127.0.0.1:39458 Total threads: 4
Dashboard: http://127.0.0.1:35566/status Memory: 3.92 GiB
Nanny: tcp://127.0.0.1:33525
Local directory: /tmp/dask-worker-space/worker-ns83vej8

Worker: 54

Comm: tcp://127.0.0.1:42833 Total threads: 4
Dashboard: http://127.0.0.1:40113/status Memory: 3.92 GiB
Nanny: tcp://127.0.0.1:33817
Local directory: /tmp/dask-worker-space/worker-qk9ph02_

Worker: 55

Comm: tcp://127.0.0.1:33469 Total threads: 4
Dashboard: http://127.0.0.1:41202/status Memory: 3.92 GiB
Nanny: tcp://127.0.0.1:40991
Local directory: /tmp/dask-worker-space/worker-h4fm2z77

Worker: 56

Comm: tcp://127.0.0.1:38907 Total threads: 4
Dashboard: http://127.0.0.1:36993/status Memory: 3.92 GiB
Nanny: tcp://127.0.0.1:44388
Local directory: /tmp/dask-worker-space/worker-6gnax67e

Worker: 57

Comm: tcp://127.0.0.1:42747 Total threads: 4
Dashboard: http://127.0.0.1:44360/status Memory: 3.92 GiB
Nanny: tcp://127.0.0.1:41998
Local directory: /tmp/dask-worker-space/worker-oufpskmj

Worker: 58

Comm: tcp://127.0.0.1:37822 Total threads: 4
Dashboard: http://127.0.0.1:35981/status Memory: 3.92 GiB
Nanny: tcp://127.0.0.1:40754
Local directory: /tmp/dask-worker-space/worker-oldevheq

Worker: 59

Comm: tcp://127.0.0.1:44703 Total threads: 4
Dashboard: http://127.0.0.1:39617/status Memory: 3.92 GiB
Nanny: tcp://127.0.0.1:35163
Local directory: /tmp/dask-worker-space/worker-0ma3lvt8

Worker: 60

Comm: tcp://127.0.0.1:40942 Total threads: 4
Dashboard: http://127.0.0.1:35629/status Memory: 3.92 GiB
Nanny: tcp://127.0.0.1:41078
Local directory: /tmp/dask-worker-space/worker-w6su4bow

Worker: 61

Comm: tcp://127.0.0.1:34934 Total threads: 4
Dashboard: http://127.0.0.1:32777/status Memory: 3.92 GiB
Nanny: tcp://127.0.0.1:42778
Local directory: /tmp/dask-worker-space/worker-241d32x9

Worker: 62

Comm: tcp://127.0.0.1:40458 Total threads: 4
Dashboard: http://127.0.0.1:34987/status Memory: 3.92 GiB
Nanny: tcp://127.0.0.1:35700
Local directory: /tmp/dask-worker-space/worker-c7568mf7

Worker: 63

Comm: tcp://127.0.0.1:42320 Total threads: 4
Dashboard: http://127.0.0.1:39163/status Memory: 3.92 GiB
Nanny: tcp://127.0.0.1:37121
Local directory: /tmp/dask-worker-space/worker-gd_vqr4w

read plotting information from a csv file¶

In [4]:
df=load.controlfile(control)
#Take out 'later' tagged computations
#df=df[~df['Value'].str.contains('later')]
df
Out[4]:
Value Inputs Equation Zone Plot Colourmap MinMax Unit Oldname Unnamed: 10
Ice_quantities param.e1te2t,icemod.sivelo,icemod.sivolu,icemo... calc.Ice_quant(data) ALL Ice_intquant None (0,20) cm s^(-1) I-2

Computation starts here¶

Each computation consists of

  1. Load NEMO data set
  2. Zoom data set
  3. Compute (or load computed data set)
  4. Save
  5. Plot
  6. Close
In [5]:
%%time
import os
calcswitch=os.environ.get('calc', 'True') 
lazy=os.environ.get('lazy','False' )
loaddata=((df.Inputs != '').any()) 
print('calcswitch=',calcswitch,'df.Inputs != nothing',loaddata, 'lazy=',lazy)
data = load.datas(catalog_url,df.Inputs,month,year,daskreport,lazy=lazy) if ((calcswitch=='True' )*loaddata) else 0 
data
calcswitch= False df.Inputs != nothing True lazy= True
CPU times: user 0 ns, sys: 497 µs, total: 497 µs
Wall time: 488 µs
Out[5]:
0
In [6]:
%%time
monitor.auto(df,data,savefig,daskreport,outputpath,file_exp='SEDNA'
            )
#calc= False
#save= False
#plot= True
Value='Ice_quantities'
Zone='ALL'
Plot='Ice_intquant'
cmap='None'
clabel='cm s^(-1)'
clim= (0, 20)
outputpath='../results/SEDNA_DELTA_MONITOR/'
nc_outputpath='../nc_results/SEDNA_DELTA_MONITOR/'
filename='SEDNA_Ice_intquant_ALL_Ice_quantities'
#3 no computing , loading starts
data=save.load_data(plot=Plot,path=nc_outputpath,filename=filename)
start saving data
load 1Dnc file from ../nc_results/SEDNA_DELTA_MONITOR/../*/SEDNA_Ice_intquant_ALL_Ice_quantities*.nc
load computed data completed
<xarray.Dataset>
Dimensions:        (t: 90)
Coordinates:
  * t              (t) object 2012-01-01 12:00:00 ... 2012-01-31 12:00:00
    time_centered  (t) object dask.array<chunksize=(31,), meta=np.ndarray>
Data variables:
    Ice volume     (t) float64 dask.array<chunksize=(31,), meta=np.ndarray>
    Ice area       (t) float64 dask.array<chunksize=(31,), meta=np.ndarray>
    Ice extent     (t) float64 dask.array<chunksize=(31,), meta=np.ndarray>
    Ice drift      (t) float64 dask.array<chunksize=(31,), meta=np.ndarray>
xarray.Dataset
    • t: 90
    • t
      (t)
      object
      2012-01-01 12:00:00 ... 2012-01-...
      axis :
      T
      standard_name :
      time
      long_name :
      Time axis
      time_origin :
      1900-01-01 00:00:00
      bounds :
      time_counter_bounds
      array([cftime.DatetimeNoLeap(2012, 1, 1, 12, 0, 0, 0, has_year_zero=True),
             cftime.DatetimeNoLeap(2012, 1, 2, 12, 0, 0, 0, has_year_zero=True),
             cftime.DatetimeNoLeap(2012, 1, 3, 12, 0, 0, 0, has_year_zero=True),
             cftime.DatetimeNoLeap(2012, 1, 4, 12, 0, 0, 0, has_year_zero=True),
             cftime.DatetimeNoLeap(2012, 1, 5, 12, 0, 0, 0, has_year_zero=True),
             cftime.DatetimeNoLeap(2012, 1, 6, 12, 0, 0, 0, has_year_zero=True),
             cftime.DatetimeNoLeap(2012, 1, 7, 12, 0, 0, 0, has_year_zero=True),
             cftime.DatetimeNoLeap(2012, 1, 8, 12, 0, 0, 0, has_year_zero=True),
             cftime.DatetimeNoLeap(2012, 1, 9, 12, 0, 0, 0, has_year_zero=True),
             cftime.DatetimeNoLeap(2012, 1, 10, 12, 0, 0, 0, has_year_zero=True),
             cftime.DatetimeNoLeap(2012, 1, 11, 12, 0, 0, 0, has_year_zero=True),
             cftime.DatetimeNoLeap(2012, 1, 12, 12, 0, 0, 0, has_year_zero=True),
             cftime.DatetimeNoLeap(2012, 1, 13, 12, 0, 0, 0, has_year_zero=True),
             cftime.DatetimeNoLeap(2012, 1, 14, 12, 0, 0, 0, has_year_zero=True),
             cftime.DatetimeNoLeap(2012, 1, 15, 12, 0, 0, 0, has_year_zero=True),
             cftime.DatetimeNoLeap(2012, 1, 16, 12, 0, 0, 0, has_year_zero=True),
             cftime.DatetimeNoLeap(2012, 1, 17, 12, 0, 0, 0, has_year_zero=True),
             cftime.DatetimeNoLeap(2012, 1, 18, 12, 0, 0, 0, has_year_zero=True),
             cftime.DatetimeNoLeap(2012, 1, 19, 12, 0, 0, 0, has_year_zero=True),
             cftime.DatetimeNoLeap(2012, 1, 20, 12, 0, 0, 0, has_year_zero=True),
             cftime.DatetimeNoLeap(2012, 1, 21, 12, 0, 0, 0, has_year_zero=True),
             cftime.DatetimeNoLeap(2012, 1, 22, 12, 0, 0, 0, has_year_zero=True),
             cftime.DatetimeNoLeap(2012, 1, 23, 12, 0, 0, 0, has_year_zero=True),
             cftime.DatetimeNoLeap(2012, 1, 24, 12, 0, 0, 0, has_year_zero=True),
             cftime.DatetimeNoLeap(2012, 1, 25, 12, 0, 0, 0, has_year_zero=True),
             cftime.DatetimeNoLeap(2012, 1, 26, 12, 0, 0, 0, has_year_zero=True),
             cftime.DatetimeNoLeap(2012, 1, 27, 12, 0, 0, 0, has_year_zero=True),
             cftime.DatetimeNoLeap(2012, 1, 28, 12, 0, 0, 0, has_year_zero=True),
             cftime.DatetimeNoLeap(2012, 1, 29, 12, 0, 0, 0, has_year_zero=True),
             cftime.DatetimeNoLeap(2012, 1, 30, 12, 0, 0, 0, has_year_zero=True),
             cftime.DatetimeNoLeap(2012, 1, 31, 12, 0, 0, 0, has_year_zero=True),
             cftime.DatetimeNoLeap(2012, 2, 1, 12, 0, 0, 0, has_year_zero=True),
             cftime.DatetimeNoLeap(2012, 2, 2, 12, 0, 0, 0, has_year_zero=True),
             cftime.DatetimeNoLeap(2012, 2, 3, 12, 0, 0, 0, has_year_zero=True),
             cftime.DatetimeNoLeap(2012, 2, 4, 12, 0, 0, 0, has_year_zero=True),
             cftime.DatetimeNoLeap(2012, 2, 5, 12, 0, 0, 0, has_year_zero=True),
             cftime.DatetimeNoLeap(2012, 2, 6, 12, 0, 0, 0, has_year_zero=True),
             cftime.DatetimeNoLeap(2012, 2, 7, 12, 0, 0, 0, has_year_zero=True),
             cftime.DatetimeNoLeap(2012, 2, 8, 12, 0, 0, 0, has_year_zero=True),
             cftime.DatetimeNoLeap(2012, 2, 9, 12, 0, 0, 0, has_year_zero=True),
             cftime.DatetimeNoLeap(2012, 2, 10, 12, 0, 0, 0, has_year_zero=True),
             cftime.DatetimeNoLeap(2012, 2, 11, 12, 0, 0, 0, has_year_zero=True),
             cftime.DatetimeNoLeap(2012, 2, 12, 12, 0, 0, 0, has_year_zero=True),
             cftime.DatetimeNoLeap(2012, 2, 13, 12, 0, 0, 0, has_year_zero=True),
             cftime.DatetimeNoLeap(2012, 2, 14, 12, 0, 0, 0, has_year_zero=True),
             cftime.DatetimeNoLeap(2012, 2, 15, 12, 0, 0, 0, has_year_zero=True),
             cftime.DatetimeNoLeap(2012, 2, 16, 12, 0, 0, 0, has_year_zero=True),
             cftime.DatetimeNoLeap(2012, 2, 17, 12, 0, 0, 0, has_year_zero=True),
             cftime.DatetimeNoLeap(2012, 2, 18, 12, 0, 0, 0, has_year_zero=True),
             cftime.DatetimeNoLeap(2012, 2, 19, 12, 0, 0, 0, has_year_zero=True),
             cftime.DatetimeNoLeap(2012, 2, 20, 12, 0, 0, 0, has_year_zero=True),
             cftime.DatetimeNoLeap(2012, 2, 21, 12, 0, 0, 0, has_year_zero=True),
             cftime.DatetimeNoLeap(2012, 2, 22, 12, 0, 0, 0, has_year_zero=True),
             cftime.DatetimeNoLeap(2012, 2, 23, 12, 0, 0, 0, has_year_zero=True),
             cftime.DatetimeNoLeap(2012, 2, 24, 12, 0, 0, 0, has_year_zero=True),
             cftime.DatetimeNoLeap(2012, 2, 25, 12, 0, 0, 0, has_year_zero=True),
             cftime.DatetimeNoLeap(2012, 2, 26, 12, 0, 0, 0, has_year_zero=True),
             cftime.DatetimeNoLeap(2012, 2, 27, 12, 0, 0, 0, has_year_zero=True),
             cftime.DatetimeNoLeap(2012, 2, 28, 12, 0, 0, 0, has_year_zero=True),
             cftime.DatetimeNoLeap(2012, 1, 1, 12, 0, 0, 0, has_year_zero=True),
             cftime.DatetimeNoLeap(2012, 1, 2, 12, 0, 0, 0, has_year_zero=True),
             cftime.DatetimeNoLeap(2012, 1, 3, 12, 0, 0, 0, has_year_zero=True),
             cftime.DatetimeNoLeap(2012, 1, 4, 12, 0, 0, 0, has_year_zero=True),
             cftime.DatetimeNoLeap(2012, 1, 5, 12, 0, 0, 0, has_year_zero=True),
             cftime.DatetimeNoLeap(2012, 1, 6, 12, 0, 0, 0, has_year_zero=True),
             cftime.DatetimeNoLeap(2012, 1, 7, 12, 0, 0, 0, has_year_zero=True),
             cftime.DatetimeNoLeap(2012, 1, 8, 12, 0, 0, 0, has_year_zero=True),
             cftime.DatetimeNoLeap(2012, 1, 9, 12, 0, 0, 0, has_year_zero=True),
             cftime.DatetimeNoLeap(2012, 1, 10, 12, 0, 0, 0, has_year_zero=True),
             cftime.DatetimeNoLeap(2012, 1, 11, 12, 0, 0, 0, has_year_zero=True),
             cftime.DatetimeNoLeap(2012, 1, 12, 12, 0, 0, 0, has_year_zero=True),
             cftime.DatetimeNoLeap(2012, 1, 13, 12, 0, 0, 0, has_year_zero=True),
             cftime.DatetimeNoLeap(2012, 1, 14, 12, 0, 0, 0, has_year_zero=True),
             cftime.DatetimeNoLeap(2012, 1, 15, 12, 0, 0, 0, has_year_zero=True),
             cftime.DatetimeNoLeap(2012, 1, 16, 12, 0, 0, 0, has_year_zero=True),
             cftime.DatetimeNoLeap(2012, 1, 17, 12, 0, 0, 0, has_year_zero=True),
             cftime.DatetimeNoLeap(2012, 1, 18, 12, 0, 0, 0, has_year_zero=True),
             cftime.DatetimeNoLeap(2012, 1, 19, 12, 0, 0, 0, has_year_zero=True),
             cftime.DatetimeNoLeap(2012, 1, 20, 12, 0, 0, 0, has_year_zero=True),
             cftime.DatetimeNoLeap(2012, 1, 21, 12, 0, 0, 0, has_year_zero=True),
             cftime.DatetimeNoLeap(2012, 1, 22, 12, 0, 0, 0, has_year_zero=True),
             cftime.DatetimeNoLeap(2012, 1, 23, 12, 0, 0, 0, has_year_zero=True),
             cftime.DatetimeNoLeap(2012, 1, 24, 12, 0, 0, 0, has_year_zero=True),
             cftime.DatetimeNoLeap(2012, 1, 25, 12, 0, 0, 0, has_year_zero=True),
             cftime.DatetimeNoLeap(2012, 1, 26, 12, 0, 0, 0, has_year_zero=True),
             cftime.DatetimeNoLeap(2012, 1, 27, 12, 0, 0, 0, has_year_zero=True),
             cftime.DatetimeNoLeap(2012, 1, 28, 12, 0, 0, 0, has_year_zero=True),
             cftime.DatetimeNoLeap(2012, 1, 29, 12, 0, 0, 0, has_year_zero=True),
             cftime.DatetimeNoLeap(2012, 1, 30, 12, 0, 0, 0, has_year_zero=True),
             cftime.DatetimeNoLeap(2012, 1, 31, 12, 0, 0, 0, has_year_zero=True)],
            dtype=object)
    • time_centered
      (t)
      object
      dask.array<chunksize=(31,), meta=np.ndarray>
      standard_name :
      time
      long_name :
      Time axis
      time_origin :
      1900-01-01 00:00:00
      bounds :
      time_centered_bounds
      Array Chunk
      Bytes 720 B 248 B
      Shape (90,) (31,)
      Count 9 Tasks 3 Chunks
      Type object numpy.ndarray
      90 1
    • Ice volume
      (t)
      float64
      dask.array<chunksize=(31,), meta=np.ndarray>
      Array Chunk
      Bytes 720 B 248 B
      Shape (90,) (31,)
      Count 9 Tasks 3 Chunks
      Type float64 numpy.ndarray
      90 1
    • Ice area
      (t)
      float64
      dask.array<chunksize=(31,), meta=np.ndarray>
      Array Chunk
      Bytes 720 B 248 B
      Shape (90,) (31,)
      Count 9 Tasks 3 Chunks
      Type float64 numpy.ndarray
      90 1
    • Ice extent
      (t)
      float64
      dask.array<chunksize=(31,), meta=np.ndarray>
      Array Chunk
      Bytes 720 B 248 B
      Shape (90,) (31,)
      Count 9 Tasks 3 Chunks
      Type float64 numpy.ndarray
      90 1
    • Ice drift
      (t)
      float64
      dask.array<chunksize=(31,), meta=np.ndarray>
      Array Chunk
      Bytes 720 B 248 B
      Shape (90,) (31,)
      Count 9 Tasks 3 Chunks
      Type float64 numpy.ndarray
      90 1
#5 Plotting
filename= plots.Ice_intquant(data,path=outputpath,filename=filename,save=savefig,cmap=cmap,clim=clim,clabel=clabel)
WARNING:param.CurvePlot02009: Converting cftime.datetime from a non-standard calendar (noleap) to a standard calendar for plotting. This may lead to subtle errors in formatting dates, for accurate tick formatting switch to the matplotlib backend.
WARNING:param.CurvePlot02018: Converting cftime.datetime from a non-standard calendar (noleap) to a standard calendar for plotting. This may lead to subtle errors in formatting dates, for accurate tick formatting switch to the matplotlib backend.
WARNING:param.CurvePlot02025: Converting cftime.datetime from a non-standard calendar (noleap) to a standard calendar for plotting. This may lead to subtle errors in formatting dates, for accurate tick formatting switch to the matplotlib backend.
WARNING:param.CurvePlot02032: Converting cftime.datetime from a non-standard calendar (noleap) to a standard calendar for plotting. This may lead to subtle errors in formatting dates, for accurate tick formatting switch to the matplotlib backend.
../results/SEDNA_DELTA_MONITOR/SEDNA_Ice_intquant_ALL_Ice_quantities_20120101-20120228.html starts plotting
plotting ../results/SEDNA_DELTA_MONITOR/SEDNA_Ice_intquant_ALL_Ice_quantities_20120101-20120228.html
../results/SEDNA_DELTA_MONITOR/SEDNA_Ice_intquant_ALL_Ice_quantities_20120101-20120228.html created
CPU times: user 4.79 s, sys: 2.27 s, total: 7.06 s
Wall time: 23.7 s