In [1]:
%matplotlib inline
import pandas as pd
import socket
host = socket.getfqdn()

from core import  load, zoom, calc, save,plots,monitor
In [2]:
#reload funcs after updating ./core/*.py
import importlib
importlib.reload(load)
importlib.reload(zoom)
importlib.reload(calc)
importlib.reload(save)
importlib.reload(plots)
importlib.reload(monitor)
Out[2]:
<module 'core.monitor' from '/ccc/work/cont003/gen7420/odakatin/monitor-sedna/notebook/core/monitor.py'>

If you submit the job with job scheduler, above¶

below are list of enviroment variable one can pass

%env local='2"¶

local : if True run dask local cluster, if not true, put number of workers setted in the 'local' if no 'local ' given, local will be setted automatically to 'True'

%env ychunk='2'¶

%env tchunk='2'¶

controls chunk. 'False' sets no modification from original netcdf file's chunk.¶

ychunk=10 will group the original netcdf file to 10 by 10¶

tchunk=1 will chunk the time coordinate one by one¶

%env file_exp=¶

'file_exp': Which 'experiment' name is it?¶

. this corresopnds to intake catalog name without path and .yaml¶

%env year=¶

for Validation, this correspoinds to path/year/month 's year¶

for monitoring, this corresponids to 'date' having * means do all files in the monitoring directory¶

setting it as 0[0-9] &1[0-9]& *[2-3][0-9], the job can be separated in three lots.¶

%env month=¶

for monitoring this corresponds to file path path-XIOS.{month}/¶

#

%env control=FWC_SSH¶

name of control file to be used for computation/plots/save/ & how it is called from Monitor.sh¶

Monitor.sh calls M_MLD_2D

and AWTD.sh, Fluxnet.sh, Siconc.sh, IceClim.sh, FWC_SSH.sh

  • AWTD.sh M_AWTMD

  • Fluxnet.sh M_Fluxnet

  • Siconc.sh M_Ice_quantities
  • IceClim.sh M_IceClim M_IceConce M_IceThick

FWC_SSH.sh M_FWC_2D M_FWC_integrals M_FWC_SSH M_SSH_anomaly

Integrals.sh M_Mean_temp_velo M_Mooring M_Sectionx M_Sectiony

%env save= proceed saving? True or False , Default is setted as True¶

%env plot= proceed plotting? True or False , Default is setted as True¶

%env calc= proceed computation? or just load computed result? True or False , Default is setted as True¶

%env save=False¶

%env lazy=False¶

For debugging this cell can help¶

%env file_exp=SEDNA_DELTA_MONITOR %env year=2012 %env month=01

0[1-2]¶

%env ychunk=10 %env ychunk=False %env save=False %env plot=True %env calc=True # %env lazy=False

False¶

%env control=M_Fluxnet

M_Sectiony ok with ychunk=False local=True lazy=False¶

In [3]:
%%time
# 'savefig': Do we save output in html? or not. keep it true. 
savefig=True
client,cluster,control,catalog_url,month,year,daskreport,outputpath = load.set_control(host)
!mkdir -p $outputpath
!mkdir -p $daskreport
client
local True
using host= irene4353.c-irene.mg1.tgcc.ccc.cea.fr starting dask cluster on local= True workers 16
10000000000
False
tgcc local cluster starting
This code is running on  irene4353.c-irene.mg1.tgcc.ccc.cea.fr using  SEDNA_DELTA_MONITOR file experiment, read from  ../lib/SEDNA_DELTA_MONITOR.yaml  on year= 2012  on month= 01  outputpath= ../results/SEDNA_DELTA_MONITOR/ daskreport= ../results/dask/6419279irene4353.c-irene.mg1.tgcc.ccc.cea.fr_SEDNA_DELTA_MONITOR_01M_Mooring/
CPU times: user 3.89 s, sys: 805 ms, total: 4.7 s
Wall time: 1min 40s
Out[3]:

Client

Client-bf6e5194-13da-11ed-8424-080038b93395

Connection method: Cluster object Cluster type: distributed.LocalCluster
Dashboard: http://127.0.0.1:8787/status

Cluster Info

LocalCluster

066b8121

Dashboard: http://127.0.0.1:8787/status Workers: 64
Total threads: 256 Total memory: 251.06 GiB
Status: running Using processes: True

Scheduler Info

Scheduler

Scheduler-a4a74b22-fa14-4e46-b5c8-d5f76b835756

Comm: tcp://127.0.0.1:45666 Workers: 64
Dashboard: http://127.0.0.1:8787/status Total threads: 256
Started: 1 minute ago Total memory: 251.06 GiB

Workers

Worker: 0

Comm: tcp://127.0.0.1:36499 Total threads: 4
Dashboard: http://127.0.0.1:42875/status Memory: 3.92 GiB
Nanny: tcp://127.0.0.1:40339
Local directory: /tmp/dask-worker-space/worker-giloff1l

Worker: 1

Comm: tcp://127.0.0.1:44268 Total threads: 4
Dashboard: http://127.0.0.1:40836/status Memory: 3.92 GiB
Nanny: tcp://127.0.0.1:37946
Local directory: /tmp/dask-worker-space/worker-0g5j3l5y

Worker: 2

Comm: tcp://127.0.0.1:33307 Total threads: 4
Dashboard: http://127.0.0.1:34512/status Memory: 3.92 GiB
Nanny: tcp://127.0.0.1:37983
Local directory: /tmp/dask-worker-space/worker-l5omtpie

Worker: 3

Comm: tcp://127.0.0.1:45228 Total threads: 4
Dashboard: http://127.0.0.1:45861/status Memory: 3.92 GiB
Nanny: tcp://127.0.0.1:46106
Local directory: /tmp/dask-worker-space/worker-lek5tdl1

Worker: 4

Comm: tcp://127.0.0.1:33269 Total threads: 4
Dashboard: http://127.0.0.1:35033/status Memory: 3.92 GiB
Nanny: tcp://127.0.0.1:44158
Local directory: /tmp/dask-worker-space/worker-y92gttzd

Worker: 5

Comm: tcp://127.0.0.1:43174 Total threads: 4
Dashboard: http://127.0.0.1:44211/status Memory: 3.92 GiB
Nanny: tcp://127.0.0.1:46360
Local directory: /tmp/dask-worker-space/worker-5sneg_78

Worker: 6

Comm: tcp://127.0.0.1:35486 Total threads: 4
Dashboard: http://127.0.0.1:33851/status Memory: 3.92 GiB
Nanny: tcp://127.0.0.1:44767
Local directory: /tmp/dask-worker-space/worker-xjh8xxrl

Worker: 7

Comm: tcp://127.0.0.1:41111 Total threads: 4
Dashboard: http://127.0.0.1:40235/status Memory: 3.92 GiB
Nanny: tcp://127.0.0.1:39201
Local directory: /tmp/dask-worker-space/worker-_i2zppjb

Worker: 8

Comm: tcp://127.0.0.1:34667 Total threads: 4
Dashboard: http://127.0.0.1:43408/status Memory: 3.92 GiB
Nanny: tcp://127.0.0.1:37030
Local directory: /tmp/dask-worker-space/worker-nqc1wsw9

Worker: 9

Comm: tcp://127.0.0.1:46424 Total threads: 4
Dashboard: http://127.0.0.1:42479/status Memory: 3.92 GiB
Nanny: tcp://127.0.0.1:43981
Local directory: /tmp/dask-worker-space/worker-4jlaebz2

Worker: 10

Comm: tcp://127.0.0.1:34727 Total threads: 4
Dashboard: http://127.0.0.1:42093/status Memory: 3.92 GiB
Nanny: tcp://127.0.0.1:38032
Local directory: /tmp/dask-worker-space/worker-4npktg6t

Worker: 11

Comm: tcp://127.0.0.1:33943 Total threads: 4
Dashboard: http://127.0.0.1:45873/status Memory: 3.92 GiB
Nanny: tcp://127.0.0.1:36586
Local directory: /tmp/dask-worker-space/worker-tyaeekyr

Worker: 12

Comm: tcp://127.0.0.1:41368 Total threads: 4
Dashboard: http://127.0.0.1:34410/status Memory: 3.92 GiB
Nanny: tcp://127.0.0.1:44252
Local directory: /tmp/dask-worker-space/worker-tltf1j9b

Worker: 13

Comm: tcp://127.0.0.1:42896 Total threads: 4
Dashboard: http://127.0.0.1:44924/status Memory: 3.92 GiB
Nanny: tcp://127.0.0.1:38342
Local directory: /tmp/dask-worker-space/worker-5mwirf61

Worker: 14

Comm: tcp://127.0.0.1:33413 Total threads: 4
Dashboard: http://127.0.0.1:34999/status Memory: 3.92 GiB
Nanny: tcp://127.0.0.1:36205
Local directory: /tmp/dask-worker-space/worker-5ek6wi4z

Worker: 15

Comm: tcp://127.0.0.1:40985 Total threads: 4
Dashboard: http://127.0.0.1:46409/status Memory: 3.92 GiB
Nanny: tcp://127.0.0.1:39367
Local directory: /tmp/dask-worker-space/worker-y6ozq7pk

Worker: 16

Comm: tcp://127.0.0.1:41018 Total threads: 4
Dashboard: http://127.0.0.1:45629/status Memory: 3.92 GiB
Nanny: tcp://127.0.0.1:35870
Local directory: /tmp/dask-worker-space/worker-oooldfqi

Worker: 17

Comm: tcp://127.0.0.1:45978 Total threads: 4
Dashboard: http://127.0.0.1:35456/status Memory: 3.92 GiB
Nanny: tcp://127.0.0.1:36907
Local directory: /tmp/dask-worker-space/worker-ipakr4zv

Worker: 18

Comm: tcp://127.0.0.1:37031 Total threads: 4
Dashboard: http://127.0.0.1:42396/status Memory: 3.92 GiB
Nanny: tcp://127.0.0.1:35310
Local directory: /tmp/dask-worker-space/worker-hscaqd4w

Worker: 19

Comm: tcp://127.0.0.1:38047 Total threads: 4
Dashboard: http://127.0.0.1:43792/status Memory: 3.92 GiB
Nanny: tcp://127.0.0.1:33934
Local directory: /tmp/dask-worker-space/worker-n8h2h49l

Worker: 20

Comm: tcp://127.0.0.1:41342 Total threads: 4
Dashboard: http://127.0.0.1:43269/status Memory: 3.92 GiB
Nanny: tcp://127.0.0.1:39616
Local directory: /tmp/dask-worker-space/worker-979q0gpa

Worker: 21

Comm: tcp://127.0.0.1:41364 Total threads: 4
Dashboard: http://127.0.0.1:46641/status Memory: 3.92 GiB
Nanny: tcp://127.0.0.1:33914
Local directory: /tmp/dask-worker-space/worker-k1ocb7lc

Worker: 22

Comm: tcp://127.0.0.1:41166 Total threads: 4
Dashboard: http://127.0.0.1:43183/status Memory: 3.92 GiB
Nanny: tcp://127.0.0.1:42369
Local directory: /tmp/dask-worker-space/worker-sv0z3p95

Worker: 23

Comm: tcp://127.0.0.1:45389 Total threads: 4
Dashboard: http://127.0.0.1:44105/status Memory: 3.92 GiB
Nanny: tcp://127.0.0.1:42813
Local directory: /tmp/dask-worker-space/worker-g1nw7xif

Worker: 24

Comm: tcp://127.0.0.1:42355 Total threads: 4
Dashboard: http://127.0.0.1:35541/status Memory: 3.92 GiB
Nanny: tcp://127.0.0.1:44659
Local directory: /tmp/dask-worker-space/worker-pfj7y1yh

Worker: 25

Comm: tcp://127.0.0.1:37389 Total threads: 4
Dashboard: http://127.0.0.1:41058/status Memory: 3.92 GiB
Nanny: tcp://127.0.0.1:45080
Local directory: /tmp/dask-worker-space/worker-b_28y_u9

Worker: 26

Comm: tcp://127.0.0.1:37002 Total threads: 4
Dashboard: http://127.0.0.1:43697/status Memory: 3.92 GiB
Nanny: tcp://127.0.0.1:44891
Local directory: /tmp/dask-worker-space/worker-olnj4um5

Worker: 27

Comm: tcp://127.0.0.1:33418 Total threads: 4
Dashboard: http://127.0.0.1:37952/status Memory: 3.92 GiB
Nanny: tcp://127.0.0.1:39518
Local directory: /tmp/dask-worker-space/worker-6ilbc7_s

Worker: 28

Comm: tcp://127.0.0.1:44088 Total threads: 4
Dashboard: http://127.0.0.1:44538/status Memory: 3.92 GiB
Nanny: tcp://127.0.0.1:40592
Local directory: /tmp/dask-worker-space/worker-lrw_1_27

Worker: 29

Comm: tcp://127.0.0.1:43147 Total threads: 4
Dashboard: http://127.0.0.1:43807/status Memory: 3.92 GiB
Nanny: tcp://127.0.0.1:34539
Local directory: /tmp/dask-worker-space/worker-jqur7_3q

Worker: 30

Comm: tcp://127.0.0.1:33896 Total threads: 4
Dashboard: http://127.0.0.1:42284/status Memory: 3.92 GiB
Nanny: tcp://127.0.0.1:39814
Local directory: /tmp/dask-worker-space/worker-dzl_zczf

Worker: 31

Comm: tcp://127.0.0.1:38353 Total threads: 4
Dashboard: http://127.0.0.1:36342/status Memory: 3.92 GiB
Nanny: tcp://127.0.0.1:44729
Local directory: /tmp/dask-worker-space/worker-9iuvzp6j

Worker: 32

Comm: tcp://127.0.0.1:35697 Total threads: 4
Dashboard: http://127.0.0.1:35067/status Memory: 3.92 GiB
Nanny: tcp://127.0.0.1:44700
Local directory: /tmp/dask-worker-space/worker-rnau2t0d

Worker: 33

Comm: tcp://127.0.0.1:40603 Total threads: 4
Dashboard: http://127.0.0.1:45694/status Memory: 3.92 GiB
Nanny: tcp://127.0.0.1:39365
Local directory: /tmp/dask-worker-space/worker-uia9zusq

Worker: 34

Comm: tcp://127.0.0.1:44814 Total threads: 4
Dashboard: http://127.0.0.1:35143/status Memory: 3.92 GiB
Nanny: tcp://127.0.0.1:34886
Local directory: /tmp/dask-worker-space/worker-ptzrm7q3

Worker: 35

Comm: tcp://127.0.0.1:44284 Total threads: 4
Dashboard: http://127.0.0.1:33267/status Memory: 3.92 GiB
Nanny: tcp://127.0.0.1:40768
Local directory: /tmp/dask-worker-space/worker-j_9cm1rz

Worker: 36

Comm: tcp://127.0.0.1:37802 Total threads: 4
Dashboard: http://127.0.0.1:43086/status Memory: 3.92 GiB
Nanny: tcp://127.0.0.1:44665
Local directory: /tmp/dask-worker-space/worker-mwi1dv7p

Worker: 37

Comm: tcp://127.0.0.1:33994 Total threads: 4
Dashboard: http://127.0.0.1:33612/status Memory: 3.92 GiB
Nanny: tcp://127.0.0.1:37935
Local directory: /tmp/dask-worker-space/worker-f44c_ojm

Worker: 38

Comm: tcp://127.0.0.1:37176 Total threads: 4
Dashboard: http://127.0.0.1:42274/status Memory: 3.92 GiB
Nanny: tcp://127.0.0.1:45003
Local directory: /tmp/dask-worker-space/worker-xo2ku9fv

Worker: 39

Comm: tcp://127.0.0.1:38813 Total threads: 4
Dashboard: http://127.0.0.1:39198/status Memory: 3.92 GiB
Nanny: tcp://127.0.0.1:37466
Local directory: /tmp/dask-worker-space/worker-utd7fkx5

Worker: 40

Comm: tcp://127.0.0.1:38308 Total threads: 4
Dashboard: http://127.0.0.1:36602/status Memory: 3.92 GiB
Nanny: tcp://127.0.0.1:40165
Local directory: /tmp/dask-worker-space/worker-lmb62wrb

Worker: 41

Comm: tcp://127.0.0.1:36082 Total threads: 4
Dashboard: http://127.0.0.1:32910/status Memory: 3.92 GiB
Nanny: tcp://127.0.0.1:34405
Local directory: /tmp/dask-worker-space/worker-hc22vfs1

Worker: 42

Comm: tcp://127.0.0.1:38113 Total threads: 4
Dashboard: http://127.0.0.1:42662/status Memory: 3.92 GiB
Nanny: tcp://127.0.0.1:41059
Local directory: /tmp/dask-worker-space/worker-y4tggqm1

Worker: 43

Comm: tcp://127.0.0.1:46109 Total threads: 4
Dashboard: http://127.0.0.1:36456/status Memory: 3.92 GiB
Nanny: tcp://127.0.0.1:34196
Local directory: /tmp/dask-worker-space/worker-nku7wur8

Worker: 44

Comm: tcp://127.0.0.1:42481 Total threads: 4
Dashboard: http://127.0.0.1:44398/status Memory: 3.92 GiB
Nanny: tcp://127.0.0.1:35352
Local directory: /tmp/dask-worker-space/worker-38od8p_6

Worker: 45

Comm: tcp://127.0.0.1:46877 Total threads: 4
Dashboard: http://127.0.0.1:34945/status Memory: 3.92 GiB
Nanny: tcp://127.0.0.1:36436
Local directory: /tmp/dask-worker-space/worker-jrkac_5g

Worker: 46

Comm: tcp://127.0.0.1:40319 Total threads: 4
Dashboard: http://127.0.0.1:45310/status Memory: 3.92 GiB
Nanny: tcp://127.0.0.1:44024
Local directory: /tmp/dask-worker-space/worker-qcrj5hsq

Worker: 47

Comm: tcp://127.0.0.1:34532 Total threads: 4
Dashboard: http://127.0.0.1:45489/status Memory: 3.92 GiB
Nanny: tcp://127.0.0.1:41711
Local directory: /tmp/dask-worker-space/worker-z56pqimy

Worker: 48

Comm: tcp://127.0.0.1:33891 Total threads: 4
Dashboard: http://127.0.0.1:40081/status Memory: 3.92 GiB
Nanny: tcp://127.0.0.1:41464
Local directory: /tmp/dask-worker-space/worker-_9z6leb3

Worker: 49

Comm: tcp://127.0.0.1:34326 Total threads: 4
Dashboard: http://127.0.0.1:44951/status Memory: 3.92 GiB
Nanny: tcp://127.0.0.1:44045
Local directory: /tmp/dask-worker-space/worker-h0ifk0r4

Worker: 50

Comm: tcp://127.0.0.1:41694 Total threads: 4
Dashboard: http://127.0.0.1:43723/status Memory: 3.92 GiB
Nanny: tcp://127.0.0.1:38096
Local directory: /tmp/dask-worker-space/worker-wndjf9_h

Worker: 51

Comm: tcp://127.0.0.1:36821 Total threads: 4
Dashboard: http://127.0.0.1:38066/status Memory: 3.92 GiB
Nanny: tcp://127.0.0.1:43127
Local directory: /tmp/dask-worker-space/worker-9vhbn3gu

Worker: 52

Comm: tcp://127.0.0.1:36893 Total threads: 4
Dashboard: http://127.0.0.1:46784/status Memory: 3.92 GiB
Nanny: tcp://127.0.0.1:37580
Local directory: /tmp/dask-worker-space/worker-1uk8qby6

Worker: 53

Comm: tcp://127.0.0.1:45989 Total threads: 4
Dashboard: http://127.0.0.1:37559/status Memory: 3.92 GiB
Nanny: tcp://127.0.0.1:41481
Local directory: /tmp/dask-worker-space/worker-g7jl1dyn

Worker: 54

Comm: tcp://127.0.0.1:32866 Total threads: 4
Dashboard: http://127.0.0.1:41712/status Memory: 3.92 GiB
Nanny: tcp://127.0.0.1:44793
Local directory: /tmp/dask-worker-space/worker-j7edcszp

Worker: 55

Comm: tcp://127.0.0.1:42483 Total threads: 4
Dashboard: http://127.0.0.1:39988/status Memory: 3.92 GiB
Nanny: tcp://127.0.0.1:45114
Local directory: /tmp/dask-worker-space/worker-9q7iuoh7

Worker: 56

Comm: tcp://127.0.0.1:44895 Total threads: 4
Dashboard: http://127.0.0.1:45745/status Memory: 3.92 GiB
Nanny: tcp://127.0.0.1:44091
Local directory: /tmp/dask-worker-space/worker-cg23cc9d

Worker: 57

Comm: tcp://127.0.0.1:37300 Total threads: 4
Dashboard: http://127.0.0.1:35536/status Memory: 3.92 GiB
Nanny: tcp://127.0.0.1:43883
Local directory: /tmp/dask-worker-space/worker-5p4_wqxn

Worker: 58

Comm: tcp://127.0.0.1:41898 Total threads: 4
Dashboard: http://127.0.0.1:43323/status Memory: 3.92 GiB
Nanny: tcp://127.0.0.1:36881
Local directory: /tmp/dask-worker-space/worker-8zy8hele

Worker: 59

Comm: tcp://127.0.0.1:39276 Total threads: 4
Dashboard: http://127.0.0.1:37505/status Memory: 3.92 GiB
Nanny: tcp://127.0.0.1:34335
Local directory: /tmp/dask-worker-space/worker-vikd7bkx

Worker: 60

Comm: tcp://127.0.0.1:46827 Total threads: 4
Dashboard: http://127.0.0.1:43531/status Memory: 3.92 GiB
Nanny: tcp://127.0.0.1:37556
Local directory: /tmp/dask-worker-space/worker-mnx2_0xw

Worker: 61

Comm: tcp://127.0.0.1:41672 Total threads: 4
Dashboard: http://127.0.0.1:40214/status Memory: 3.92 GiB
Nanny: tcp://127.0.0.1:38767
Local directory: /tmp/dask-worker-space/worker-s3qginwp

Worker: 62

Comm: tcp://127.0.0.1:46325 Total threads: 4
Dashboard: http://127.0.0.1:36204/status Memory: 3.92 GiB
Nanny: tcp://127.0.0.1:45762
Local directory: /tmp/dask-worker-space/worker-uq8wal2f

Worker: 63

Comm: tcp://127.0.0.1:42086 Total threads: 4
Dashboard: http://127.0.0.1:42814/status Memory: 3.92 GiB
Nanny: tcp://127.0.0.1:34393
Local directory: /tmp/dask-worker-space/worker-_1tg6zfs

read plotting information from a csv file¶

In [4]:
df=load.controlfile(control)
#Take out 'later' tagged computations
#df=df[~df['Value'].str.contains('later')]
df
Out[4]:
Value Inputs Equation Zone Plot Colourmap MinMax Unit Oldname Unnamed: 10
Mooring_Arc_B gridS.vosaline,gridT.votemper,param.depth,para... data Arc_B Mooring rainbow {'vosaline': (28.0,34.4), 'votemper': (-2.0,2.0)} None x
Mooring_Eur_B gridS.vosaline,gridT.votemper,param.depth,para... data Eur_B Mooring rainbow {'vosaline': (32.0,35.0), 'votemper': (-2.0,3.0)} None x

Computation starts here¶

Each computation consists of

  1. Load NEMO data set
  2. Zoom data set
  3. Compute (or load computed data set)
  4. Save
  5. Plot
  6. Close
In [5]:
%%time
import os
calcswitch=os.environ.get('calc', 'True') 
lazy=os.environ.get('lazy','False' )
loaddata=((df.Inputs != '').any()) 
print('calcswitch=',calcswitch,'df.Inputs != nothing',loaddata, 'lazy=',lazy)
data = load.datas(catalog_url,df.Inputs,month,year,daskreport,lazy=lazy) if ((calcswitch=='True' )*loaddata) else 0 
data
calcswitch= True df.Inputs != nothing True lazy= False
../lib/SEDNA_DELTA_MONITOR.yaml
using param_xios reading  ../lib/SEDNA_DELTA_MONITOR.yaml
using param_xios reading  <bound method DataSourceBase.describe of sources:
  param_xios:
    args:
      combine: nested
      concat_dim: y
      urlpath: /ccc/work/cont003/gen7420/odakatin/CONFIGS/SEDNA/SEDNA-I/SEDNA_Domain_cfg_Tgt_20210423_tsh10m_L1/param_f32/x_*.nc
      xarray_kwargs:
        compat: override
        coords: minimal
        data_vars: minimal
        parallel: true
    description: SEDNA NEMO parameters from MPI output  nav_lon lat fails
    driver: intake_xarray.netcdf.NetCDFSource
    metadata:
      catalog_dir: /ccc/work/cont003/gen7420/odakatin/monitor-sedna/notebook/../lib/
>
{'name': 'param_xios', 'container': 'xarray', 'plugin': ['netcdf'], 'driver': ['netcdf'], 'description': 'SEDNA NEMO parameters from MPI output  nav_lon lat fails', 'direct_access': 'forbid', 'user_parameters': [{'name': 'path', 'description': 'file coordinate', 'type': 'str', 'default': '/ccc/work/cont003/gen7420/odakatin/CONFIGS/SEDNA/MESH/SEDNA_mesh_mask_Tgt_20210423_tsh10m_L1/param'}], 'metadata': {}, 'args': {'urlpath': '/ccc/work/cont003/gen7420/odakatin/CONFIGS/SEDNA/SEDNA-I/SEDNA_Domain_cfg_Tgt_20210423_tsh10m_L1/param_f32/x_*.nc', 'combine': 'nested', 'concat_dim': 'y'}}
0 read gridS ['vosaline']
lazy= False
using load_data_xios_kerchunk reading  gridS
using load_data_xios_kerchunk reading  <bound method DataSourceBase.describe of sources:
  data_xios_kerchunk:
    args:
      consolidated: false
      storage_options:
        fo: file:////ccc/cont003/home/ra5563/ra5563/catalogue/DELTA/201201/gridS_0[0-5][0-9][0-9].json
        target_protocol: file
      urlpath: reference://
    description: CREG025 NEMO outputs from different xios server in kerchunk format
    driver: intake_xarray.xzarr.ZarrSource
    metadata:
      catalog_dir: /ccc/work/cont003/gen7420/odakatin/monitor-sedna/notebook/../lib/
>
      took 23.693634748458862 seconds
0 merging gridS ['vosaline']
1 read gridT ['votemper']
lazy= False
using load_data_xios_kerchunk reading  gridT
using load_data_xios_kerchunk reading  <bound method DataSourceBase.describe of sources:
  data_xios_kerchunk:
    args:
      consolidated: false
      storage_options:
        fo: file:////ccc/cont003/home/ra5563/ra5563/catalogue/DELTA/201201/gridT_0[0-5][0-9][0-9].json
        target_protocol: file
      urlpath: reference://
    description: CREG025 NEMO outputs from different xios server in kerchunk format
    driver: intake_xarray.xzarr.ZarrSource
    metadata:
      catalog_dir: /ccc/work/cont003/gen7420/odakatin/monitor-sedna/notebook/../lib/
>
      took 22.180362224578857 seconds
1 merging gridT ['votemper']
      took 0.9276597499847412 seconds
param mask2d will be included in data
param depth will be included in data
param nav_lon will be included in data
param nav_lat will be included in data
param mask will be included in data
ychunk= 5 calldatas_y_rechunk
sum_num (13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12)
start rechunking with (65, 65, 62, 60, 60, 60, 60, 60, 60, 60, 60, 60, 60, 60, 60, 60, 60, 60, 60, 60, 60, 60, 60, 60, 60, 60, 60, 60, 60, 60, 60, 60, 60, 60, 60, 60, 60, 60, 60, 60, 60, 60, 60, 60, 60, 60, 60, 60, 60, 60, 60, 60, 60, 60, 60, 60, 60, 60, 60, 60, 60, 60, 60, 60, 60, 60, 60, 60, 60, 60, 60, 60, 60, 60, 60, 60, 60, 60, 60, 60, 60, 60, 60, 60, 60, 60, 60, 60, 60, 60, 60, 60, 60, 60, 60, 60, 60, 60, 60, 60, 60, 60, 60, 60, 60, 60, 60, 60, 48)
end of y_rechunk
before rechunking t item (1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1)
start rechunking t with 1
end of t_rechunk
CPU times: user 49.7 s, sys: 13.3 s, total: 1min 2s
Wall time: 1min 44s
Out[5]:
<xarray.Dataset>
Dimensions:        (t: 31, z: 150, y: 6540, x: 6560)
Coordinates:
    time_centered  (t) object dask.array<chunksize=(1,), meta=np.ndarray>
  * t              (t) object 2012-01-01 12:00:00 ... 2012-01-31 12:00:00
  * y              (y) int64 1 2 3 4 5 6 7 ... 6535 6536 6537 6538 6539 6540
  * x              (x) int64 1 2 3 4 5 6 7 ... 6555 6556 6557 6558 6559 6560
  * z              (z) int64 1 2 3 4 5 6 7 8 ... 143 144 145 146 147 148 149 150
    mask2d         (y, x) bool dask.array<chunksize=(65, 6560), meta=np.ndarray>
    depth          (z, y, x) float32 dask.array<chunksize=(150, 65, 6560), meta=np.ndarray>
    nav_lon        (y, x) float32 dask.array<chunksize=(65, 6560), meta=np.ndarray>
    nav_lat        (y, x) float32 dask.array<chunksize=(65, 6560), meta=np.ndarray>
    mask           (z, y, x) bool dask.array<chunksize=(150, 65, 6560), meta=np.ndarray>
Data variables:
    vosaline       (t, z, y, x) float32 dask.array<chunksize=(1, 150, 65, 6560), meta=np.ndarray>
    votemper       (t, z, y, x) float32 dask.array<chunksize=(1, 150, 65, 6560), meta=np.ndarray>
Attributes: (12/26)
    CASE:                    DELTA
    CONFIG:                  SEDNA
    Conventions:             CF-1.6
    DOMAIN_dimensions_ids:   [2, 3]
    DOMAIN_halo_size_end:    [0, 0]
    DOMAIN_halo_size_start:  [0, 0]
    ...                      ...
    nj:                      13
    output_frequency:        1d
    start_date:              20090101
    timeStamp:               2022-Jan-17 19:00:16 GMT
    title:                   ocean T grid variables
    uuid:                    d8db76f6-a436-451a-9ab1-72dc892753af
xarray.Dataset
    • t: 31
    • z: 150
    • y: 6540
    • x: 6560
    • time_centered
      (t)
      object
      dask.array<chunksize=(1,), meta=np.ndarray>
      bounds :
      time_centered_bounds
      long_name :
      Time axis
      standard_name :
      time
      time_origin :
      1900-01-01 00:00:00
      Array Chunk
      Bytes 248 B 8 B
      Shape (31,) (1,)
      Count 189 Tasks 31 Chunks
      Type object numpy.ndarray
      31 1
    • t
      (t)
      object
      2012-01-01 12:00:00 ... 2012-01-...
      axis :
      T
      bounds :
      time_counter_bounds
      long_name :
      Time axis
      standard_name :
      time
      time_origin :
      1900-01-01 00:00:00
      array([cftime.DatetimeNoLeap(2012, 1, 1, 12, 0, 0, 0, has_year_zero=True),
             cftime.DatetimeNoLeap(2012, 1, 2, 12, 0, 0, 0, has_year_zero=True),
             cftime.DatetimeNoLeap(2012, 1, 3, 12, 0, 0, 0, has_year_zero=True),
             cftime.DatetimeNoLeap(2012, 1, 4, 12, 0, 0, 0, has_year_zero=True),
             cftime.DatetimeNoLeap(2012, 1, 5, 12, 0, 0, 0, has_year_zero=True),
             cftime.DatetimeNoLeap(2012, 1, 6, 12, 0, 0, 0, has_year_zero=True),
             cftime.DatetimeNoLeap(2012, 1, 7, 12, 0, 0, 0, has_year_zero=True),
             cftime.DatetimeNoLeap(2012, 1, 8, 12, 0, 0, 0, has_year_zero=True),
             cftime.DatetimeNoLeap(2012, 1, 9, 12, 0, 0, 0, has_year_zero=True),
             cftime.DatetimeNoLeap(2012, 1, 10, 12, 0, 0, 0, has_year_zero=True),
             cftime.DatetimeNoLeap(2012, 1, 11, 12, 0, 0, 0, has_year_zero=True),
             cftime.DatetimeNoLeap(2012, 1, 12, 12, 0, 0, 0, has_year_zero=True),
             cftime.DatetimeNoLeap(2012, 1, 13, 12, 0, 0, 0, has_year_zero=True),
             cftime.DatetimeNoLeap(2012, 1, 14, 12, 0, 0, 0, has_year_zero=True),
             cftime.DatetimeNoLeap(2012, 1, 15, 12, 0, 0, 0, has_year_zero=True),
             cftime.DatetimeNoLeap(2012, 1, 16, 12, 0, 0, 0, has_year_zero=True),
             cftime.DatetimeNoLeap(2012, 1, 17, 12, 0, 0, 0, has_year_zero=True),
             cftime.DatetimeNoLeap(2012, 1, 18, 12, 0, 0, 0, has_year_zero=True),
             cftime.DatetimeNoLeap(2012, 1, 19, 12, 0, 0, 0, has_year_zero=True),
             cftime.DatetimeNoLeap(2012, 1, 20, 12, 0, 0, 0, has_year_zero=True),
             cftime.DatetimeNoLeap(2012, 1, 21, 12, 0, 0, 0, has_year_zero=True),
             cftime.DatetimeNoLeap(2012, 1, 22, 12, 0, 0, 0, has_year_zero=True),
             cftime.DatetimeNoLeap(2012, 1, 23, 12, 0, 0, 0, has_year_zero=True),
             cftime.DatetimeNoLeap(2012, 1, 24, 12, 0, 0, 0, has_year_zero=True),
             cftime.DatetimeNoLeap(2012, 1, 25, 12, 0, 0, 0, has_year_zero=True),
             cftime.DatetimeNoLeap(2012, 1, 26, 12, 0, 0, 0, has_year_zero=True),
             cftime.DatetimeNoLeap(2012, 1, 27, 12, 0, 0, 0, has_year_zero=True),
             cftime.DatetimeNoLeap(2012, 1, 28, 12, 0, 0, 0, has_year_zero=True),
             cftime.DatetimeNoLeap(2012, 1, 29, 12, 0, 0, 0, has_year_zero=True),
             cftime.DatetimeNoLeap(2012, 1, 30, 12, 0, 0, 0, has_year_zero=True),
             cftime.DatetimeNoLeap(2012, 1, 31, 12, 0, 0, 0, has_year_zero=True)],
            dtype=object)
    • y
      (y)
      int64
      1 2 3 4 5 ... 6537 6538 6539 6540
      array([   1,    2,    3, ..., 6538, 6539, 6540])
    • x
      (x)
      int64
      1 2 3 4 5 ... 6557 6558 6559 6560
      array([   1,    2,    3, ..., 6558, 6559, 6560])
    • z
      (z)
      int64
      1 2 3 4 5 6 ... 146 147 148 149 150
      array([  1,   2,   3,   4,   5,   6,   7,   8,   9,  10,  11,  12,  13,  14,
              15,  16,  17,  18,  19,  20,  21,  22,  23,  24,  25,  26,  27,  28,
              29,  30,  31,  32,  33,  34,  35,  36,  37,  38,  39,  40,  41,  42,
              43,  44,  45,  46,  47,  48,  49,  50,  51,  52,  53,  54,  55,  56,
              57,  58,  59,  60,  61,  62,  63,  64,  65,  66,  67,  68,  69,  70,
              71,  72,  73,  74,  75,  76,  77,  78,  79,  80,  81,  82,  83,  84,
              85,  86,  87,  88,  89,  90,  91,  92,  93,  94,  95,  96,  97,  98,
              99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112,
             113, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126,
             127, 128, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139, 140,
             141, 142, 143, 144, 145, 146, 147, 148, 149, 150])
    • mask2d
      (y, x)
      bool
      dask.array<chunksize=(65, 6560), meta=np.ndarray>
      Array Chunk
      Bytes 40.91 MiB 416.41 kiB
      Shape (6540, 6560) (65, 6560)
      Count 1741 Tasks 109 Chunks
      Type bool numpy.ndarray
      6560 6540
    • depth
      (z, y, x)
      float32
      dask.array<chunksize=(150, 65, 6560), meta=np.ndarray>
      Array Chunk
      Bytes 23.97 GiB 243.99 MiB
      Shape (150, 6540, 6560) (150, 65, 6560)
      Count 1741 Tasks 109 Chunks
      Type float32 numpy.ndarray
      6560 6540 150
    • nav_lon
      (y, x)
      float32
      dask.array<chunksize=(65, 6560), meta=np.ndarray>
      Array Chunk
      Bytes 163.66 MiB 1.63 MiB
      Shape (6540, 6560) (65, 6560)
      Count 1741 Tasks 109 Chunks
      Type float32 numpy.ndarray
      6560 6540
    • nav_lat
      (y, x)
      float32
      dask.array<chunksize=(65, 6560), meta=np.ndarray>
      Array Chunk
      Bytes 163.66 MiB 1.63 MiB
      Shape (6540, 6560) (65, 6560)
      Count 1741 Tasks 109 Chunks
      Type float32 numpy.ndarray
      6560 6540
    • mask
      (z, y, x)
      bool
      dask.array<chunksize=(150, 65, 6560), meta=np.ndarray>
      Array Chunk
      Bytes 5.99 GiB 61.00 MiB
      Shape (150, 6540, 6560) (150, 65, 6560)
      Count 1741 Tasks 109 Chunks
      Type bool numpy.ndarray
      6560 6540 150
    • vosaline
      (t, z, y, x)
      float32
      dask.array<chunksize=(1, 150, 65, 6560), meta=np.ndarray>
      cell_methods :
      time: mean (interval: 40 s)
      interval_operation :
      40 s
      interval_write :
      1 d
      long_name :
      salinity
      online_operation :
      average
      standard_name :
      sea_water_practical_salinity
      units :
      1e-3
      Array Chunk
      Bytes 743.18 GiB 243.99 MiB
      Shape (31, 150, 6540, 6560) (1, 150, 65, 6560)
      Count 37651 Tasks 3379 Chunks
      Type float32 numpy.ndarray
      31 1 6560 6540 150
    • votemper
      (t, z, y, x)
      float32
      dask.array<chunksize=(1, 150, 65, 6560), meta=np.ndarray>
      cell_methods :
      time: mean (interval: 40 s)
      interval_operation :
      40 s
      interval_write :
      1 d
      long_name :
      temperature
      online_operation :
      average
      standard_name :
      sea_water_potential_temperature
      units :
      degC
      Array Chunk
      Bytes 743.18 GiB 243.99 MiB
      Shape (31, 150, 6540, 6560) (1, 150, 65, 6560)
      Count 37651 Tasks 3379 Chunks
      Type float32 numpy.ndarray
      31 1 6560 6540 150
  • CASE :
    DELTA
    CONFIG :
    SEDNA
    Conventions :
    CF-1.6
    DOMAIN_dimensions_ids :
    [2, 3]
    DOMAIN_halo_size_end :
    [0, 0]
    DOMAIN_halo_size_start :
    [0, 0]
    DOMAIN_number :
    0
    DOMAIN_number_total :
    544
    DOMAIN_position_first :
    [1, 1]
    DOMAIN_position_last :
    [6560, 13]
    DOMAIN_size_global :
    [6560, 6540]
    DOMAIN_size_local :
    [6560, 13]
    DOMAIN_type :
    box
    NCO :
    netCDF Operators version 4.9.1 (Homepage = http://nco.sf.net, Code = http://github.com/nco/nco)
    description :
    ocean T grid variables
    history :
    Tue Jan 18 17:23:11 2022: ncks -4 -L 1 SEDNA-DELTA_1d_gridS_201201-201201_NOZIP_0000.nc /ccc/scratch/cont003/gen7420/talandel/SEDNA/SEDNA-DELTA-S/SPLIT/1d/2012/01/SEDNA-DELTA_1d_gridS_201201-201201_0000.nc Tue Jan 18 17:22:45 2022: ncrcat -n 31,2,1 SEDNA-DELTA_1d_gridS_0000_01.nc SEDNA-DELTA_1d_gridS_201201-201201_NOZIP_0000.nc
    ibegin :
    0
    jbegin :
    0
    name :
    /ccc/scratch/cont003/ra5563/talandel/ONGOING-RUNS/SEDNA-DELTA-XIOS.46/SEDNA-DELTA_1d_gridS
    ni :
    6560
    nj :
    13
    output_frequency :
    1d
    start_date :
    20090101
    timeStamp :
    2022-Jan-17 19:00:16 GMT
    title :
    ocean T grid variables
    uuid :
    d8db76f6-a436-451a-9ab1-72dc892753af
In [6]:
%%time
monitor.auto(df,data,savefig,daskreport,outputpath,file_exp='SEDNA'
            )
#calc= True
#save= True
#plot= False
Value='Mooring_Arc_B'
Zone='Arc_B'
Plot='Mooring'
cmap='rainbow'
clabel='None'
clim= {'vosaline': (28.0, 34.4), 'votemper': (-2.0, 2.0)}
outputpath='../results/SEDNA_DELTA_MONITOR/'
nc_outputpath='../nc_results/SEDNA_DELTA_MONITOR/'
filename='SEDNA_Mooring_Arc_B_Mooring_Arc_B'
data=monitor.optimize_dataset(data)
#2 Zooming Data
data= zoom.Arc_B(data)
data=monitor.optimize_dataset(data)
<xarray.Dataset>
Dimensions:        (t: 31, z: 102)
Coordinates:
    time_centered  (t) object dask.array<chunksize=(1,), meta=np.ndarray>
  * t              (t) object 2012-01-01 12:00:00 ... 2012-01-31 12:00:00
    y              int64 4967
    x              int64 2471
  * z              (z) int64 1 2 3 4 5 6 7 8 9 ... 94 95 96 97 98 99 100 101 102
    mask2d         bool dask.array<chunksize=(), meta=np.ndarray>
    depth          (z) float32 dask.array<chunksize=(102,), meta=np.ndarray>
    nav_lon        float32 dask.array<chunksize=(), meta=np.ndarray>
    nav_lat        float32 dask.array<chunksize=(), meta=np.ndarray>
    mask           (z) bool dask.array<chunksize=(102,), meta=np.ndarray>
Data variables:
    vosaline       (t, z) float32 dask.array<chunksize=(1, 102), meta=np.ndarray>
    votemper       (t, z) float32 dask.array<chunksize=(1, 102), meta=np.ndarray>
Attributes: (12/26)
    CASE:                    DELTA
    CONFIG:                  SEDNA
    Conventions:             CF-1.6
    DOMAIN_dimensions_ids:   [2, 3]
    DOMAIN_halo_size_end:    [0, 0]
    DOMAIN_halo_size_start:  [0, 0]
    ...                      ...
    nj:                      13
    output_frequency:        1d
    start_date:              20090101
    timeStamp:               2022-Jan-17 19:00:16 GMT
    title:                   ocean T grid variables
    uuid:                    d8db76f6-a436-451a-9ab1-72dc892753af
xarray.Dataset
    • t: 31
    • z: 102
    • time_centered
      (t)
      object
      dask.array<chunksize=(1,), meta=np.ndarray>
      bounds :
      time_centered_bounds
      long_name :
      Time axis
      standard_name :
      time
      time_origin :
      1900-01-01 00:00:00
      Array Chunk
      Bytes 248 B 8 B
      Shape (31,) (1,)
      Count 189 Tasks 31 Chunks
      Type object numpy.ndarray
      31 1
    • t
      (t)
      object
      2012-01-01 12:00:00 ... 2012-01-...
      axis :
      T
      bounds :
      time_counter_bounds
      long_name :
      Time axis
      standard_name :
      time
      time_origin :
      1900-01-01 00:00:00
      array([cftime.DatetimeNoLeap(2012, 1, 1, 12, 0, 0, 0, has_year_zero=True),
             cftime.DatetimeNoLeap(2012, 1, 2, 12, 0, 0, 0, has_year_zero=True),
             cftime.DatetimeNoLeap(2012, 1, 3, 12, 0, 0, 0, has_year_zero=True),
             cftime.DatetimeNoLeap(2012, 1, 4, 12, 0, 0, 0, has_year_zero=True),
             cftime.DatetimeNoLeap(2012, 1, 5, 12, 0, 0, 0, has_year_zero=True),
             cftime.DatetimeNoLeap(2012, 1, 6, 12, 0, 0, 0, has_year_zero=True),
             cftime.DatetimeNoLeap(2012, 1, 7, 12, 0, 0, 0, has_year_zero=True),
             cftime.DatetimeNoLeap(2012, 1, 8, 12, 0, 0, 0, has_year_zero=True),
             cftime.DatetimeNoLeap(2012, 1, 9, 12, 0, 0, 0, has_year_zero=True),
             cftime.DatetimeNoLeap(2012, 1, 10, 12, 0, 0, 0, has_year_zero=True),
             cftime.DatetimeNoLeap(2012, 1, 11, 12, 0, 0, 0, has_year_zero=True),
             cftime.DatetimeNoLeap(2012, 1, 12, 12, 0, 0, 0, has_year_zero=True),
             cftime.DatetimeNoLeap(2012, 1, 13, 12, 0, 0, 0, has_year_zero=True),
             cftime.DatetimeNoLeap(2012, 1, 14, 12, 0, 0, 0, has_year_zero=True),
             cftime.DatetimeNoLeap(2012, 1, 15, 12, 0, 0, 0, has_year_zero=True),
             cftime.DatetimeNoLeap(2012, 1, 16, 12, 0, 0, 0, has_year_zero=True),
             cftime.DatetimeNoLeap(2012, 1, 17, 12, 0, 0, 0, has_year_zero=True),
             cftime.DatetimeNoLeap(2012, 1, 18, 12, 0, 0, 0, has_year_zero=True),
             cftime.DatetimeNoLeap(2012, 1, 19, 12, 0, 0, 0, has_year_zero=True),
             cftime.DatetimeNoLeap(2012, 1, 20, 12, 0, 0, 0, has_year_zero=True),
             cftime.DatetimeNoLeap(2012, 1, 21, 12, 0, 0, 0, has_year_zero=True),
             cftime.DatetimeNoLeap(2012, 1, 22, 12, 0, 0, 0, has_year_zero=True),
             cftime.DatetimeNoLeap(2012, 1, 23, 12, 0, 0, 0, has_year_zero=True),
             cftime.DatetimeNoLeap(2012, 1, 24, 12, 0, 0, 0, has_year_zero=True),
             cftime.DatetimeNoLeap(2012, 1, 25, 12, 0, 0, 0, has_year_zero=True),
             cftime.DatetimeNoLeap(2012, 1, 26, 12, 0, 0, 0, has_year_zero=True),
             cftime.DatetimeNoLeap(2012, 1, 27, 12, 0, 0, 0, has_year_zero=True),
             cftime.DatetimeNoLeap(2012, 1, 28, 12, 0, 0, 0, has_year_zero=True),
             cftime.DatetimeNoLeap(2012, 1, 29, 12, 0, 0, 0, has_year_zero=True),
             cftime.DatetimeNoLeap(2012, 1, 30, 12, 0, 0, 0, has_year_zero=True),
             cftime.DatetimeNoLeap(2012, 1, 31, 12, 0, 0, 0, has_year_zero=True)],
            dtype=object)
    • y
      ()
      int64
      4967
      array(4967)
    • x
      ()
      int64
      2471
      array(2471)
    • z
      (z)
      int64
      1 2 3 4 5 6 ... 98 99 100 101 102
      array([  1,   2,   3,   4,   5,   6,   7,   8,   9,  10,  11,  12,  13,  14,
              15,  16,  17,  18,  19,  20,  21,  22,  23,  24,  25,  26,  27,  28,
              29,  30,  31,  32,  33,  34,  35,  36,  37,  38,  39,  40,  41,  42,
              43,  44,  45,  46,  47,  48,  49,  50,  51,  52,  53,  54,  55,  56,
              57,  58,  59,  60,  61,  62,  63,  64,  65,  66,  67,  68,  69,  70,
              71,  72,  73,  74,  75,  76,  77,  78,  79,  80,  81,  82,  83,  84,
              85,  86,  87,  88,  89,  90,  91,  92,  93,  94,  95,  96,  97,  98,
              99, 100, 101, 102])
    • mask2d
      ()
      bool
      dask.array<chunksize=(), meta=np.ndarray>
      Array Chunk
      Bytes 1 B 1 B
      Shape () ()
      Count 1743 Tasks 1 Chunks
      Type bool numpy.ndarray
    • depth
      (z)
      float32
      dask.array<chunksize=(102,), meta=np.ndarray>
      Array Chunk
      Bytes 408 B 408 B
      Shape (102,) (102,)
      Count 1744 Tasks 1 Chunks
      Type float32 numpy.ndarray
      102 1
    • nav_lon
      ()
      float32
      dask.array<chunksize=(), meta=np.ndarray>
      Array Chunk
      Bytes 4 B 4 B
      Shape () ()
      Count 1743 Tasks 1 Chunks
      Type float32 numpy.ndarray
    • nav_lat
      ()
      float32
      dask.array<chunksize=(), meta=np.ndarray>
      Array Chunk
      Bytes 4 B 4 B
      Shape () ()
      Count 1743 Tasks 1 Chunks
      Type float32 numpy.ndarray
    • mask
      (z)
      bool
      dask.array<chunksize=(102,), meta=np.ndarray>
      Array Chunk
      Bytes 102 B 102 B
      Shape (102,) (102,)
      Count 1744 Tasks 1 Chunks
      Type bool numpy.ndarray
      102 1
    • vosaline
      (t, z)
      float32
      dask.array<chunksize=(1, 102), meta=np.ndarray>
      cell_methods :
      time: mean (interval: 40 s)
      interval_operation :
      40 s
      interval_write :
      1 d
      long_name :
      salinity
      online_operation :
      average
      standard_name :
      sea_water_practical_salinity
      units :
      1e-3
      Array Chunk
      Bytes 12.35 kiB 408 B
      Shape (31, 102) (1, 102)
      Count 425 Tasks 31 Chunks
      Type float32 numpy.ndarray
      102 31
    • votemper
      (t, z)
      float32
      dask.array<chunksize=(1, 102), meta=np.ndarray>
      cell_methods :
      time: mean (interval: 40 s)
      interval_operation :
      40 s
      interval_write :
      1 d
      long_name :
      temperature
      online_operation :
      average
      standard_name :
      sea_water_potential_temperature
      units :
      degC
      Array Chunk
      Bytes 12.35 kiB 408 B
      Shape (31, 102) (1, 102)
      Count 425 Tasks 31 Chunks
      Type float32 numpy.ndarray
      102 31
  • CASE :
    DELTA
    CONFIG :
    SEDNA
    Conventions :
    CF-1.6
    DOMAIN_dimensions_ids :
    [2, 3]
    DOMAIN_halo_size_end :
    [0, 0]
    DOMAIN_halo_size_start :
    [0, 0]
    DOMAIN_number :
    0
    DOMAIN_number_total :
    544
    DOMAIN_position_first :
    [1, 1]
    DOMAIN_position_last :
    [6560, 13]
    DOMAIN_size_global :
    [6560, 6540]
    DOMAIN_size_local :
    [6560, 13]
    DOMAIN_type :
    box
    NCO :
    netCDF Operators version 4.9.1 (Homepage = http://nco.sf.net, Code = http://github.com/nco/nco)
    description :
    ocean T grid variables
    history :
    Tue Jan 18 17:23:11 2022: ncks -4 -L 1 SEDNA-DELTA_1d_gridS_201201-201201_NOZIP_0000.nc /ccc/scratch/cont003/gen7420/talandel/SEDNA/SEDNA-DELTA-S/SPLIT/1d/2012/01/SEDNA-DELTA_1d_gridS_201201-201201_0000.nc Tue Jan 18 17:22:45 2022: ncrcat -n 31,2,1 SEDNA-DELTA_1d_gridS_0000_01.nc SEDNA-DELTA_1d_gridS_201201-201201_NOZIP_0000.nc
    ibegin :
    0
    jbegin :
    0
    name :
    /ccc/scratch/cont003/ra5563/talandel/ONGOING-RUNS/SEDNA-DELTA-XIOS.46/SEDNA-DELTA_1d_gridS
    ni :
    6560
    nj :
    13
    output_frequency :
    1d
    start_date :
    20090101
    timeStamp :
    2022-Jan-17 19:00:16 GMT
    title :
    ocean T grid variables
    uuid :
    d8db76f6-a436-451a-9ab1-72dc892753af
#3 Start computing 
data= data
monitor.optimize_dataset(data)
add optimise here once otimise can recognise
<xarray.Dataset>
Dimensions:        (t: 31, z: 102)
Coordinates:
    time_centered  (t) object dask.array<chunksize=(1,), meta=np.ndarray>
  * t              (t) object 2012-01-01 12:00:00 ... 2012-01-31 12:00:00
    y              int64 4967
    x              int64 2471
  * z              (z) int64 1 2 3 4 5 6 7 8 9 ... 94 95 96 97 98 99 100 101 102
    mask2d         bool dask.array<chunksize=(), meta=np.ndarray>
    depth          (z) float32 dask.array<chunksize=(102,), meta=np.ndarray>
    nav_lon        float32 dask.array<chunksize=(), meta=np.ndarray>
    nav_lat        float32 dask.array<chunksize=(), meta=np.ndarray>
    mask           (z) bool dask.array<chunksize=(102,), meta=np.ndarray>
Data variables:
    vosaline       (t, z) float32 dask.array<chunksize=(1, 102), meta=np.ndarray>
    votemper       (t, z) float32 dask.array<chunksize=(1, 102), meta=np.ndarray>
Attributes: (12/26)
    CASE:                    DELTA
    CONFIG:                  SEDNA
    Conventions:             CF-1.6
    DOMAIN_dimensions_ids:   [2, 3]
    DOMAIN_halo_size_end:    [0, 0]
    DOMAIN_halo_size_start:  [0, 0]
    ...                      ...
    nj:                      13
    output_frequency:        1d
    start_date:              20090101
    timeStamp:               2022-Jan-17 19:00:16 GMT
    title:                   ocean T grid variables
    uuid:                    d8db76f6-a436-451a-9ab1-72dc892753af
xarray.Dataset
    • t: 31
    • z: 102
    • time_centered
      (t)
      object
      dask.array<chunksize=(1,), meta=np.ndarray>
      bounds :
      time_centered_bounds
      long_name :
      Time axis
      standard_name :
      time
      time_origin :
      1900-01-01 00:00:00
      Array Chunk
      Bytes 248 B 8 B
      Shape (31,) (1,)
      Count 189 Tasks 31 Chunks
      Type object numpy.ndarray
      31 1
    • t
      (t)
      object
      2012-01-01 12:00:00 ... 2012-01-...
      axis :
      T
      bounds :
      time_counter_bounds
      long_name :
      Time axis
      standard_name :
      time
      time_origin :
      1900-01-01 00:00:00
      array([cftime.DatetimeNoLeap(2012, 1, 1, 12, 0, 0, 0, has_year_zero=True),
             cftime.DatetimeNoLeap(2012, 1, 2, 12, 0, 0, 0, has_year_zero=True),
             cftime.DatetimeNoLeap(2012, 1, 3, 12, 0, 0, 0, has_year_zero=True),
             cftime.DatetimeNoLeap(2012, 1, 4, 12, 0, 0, 0, has_year_zero=True),
             cftime.DatetimeNoLeap(2012, 1, 5, 12, 0, 0, 0, has_year_zero=True),
             cftime.DatetimeNoLeap(2012, 1, 6, 12, 0, 0, 0, has_year_zero=True),
             cftime.DatetimeNoLeap(2012, 1, 7, 12, 0, 0, 0, has_year_zero=True),
             cftime.DatetimeNoLeap(2012, 1, 8, 12, 0, 0, 0, has_year_zero=True),
             cftime.DatetimeNoLeap(2012, 1, 9, 12, 0, 0, 0, has_year_zero=True),
             cftime.DatetimeNoLeap(2012, 1, 10, 12, 0, 0, 0, has_year_zero=True),
             cftime.DatetimeNoLeap(2012, 1, 11, 12, 0, 0, 0, has_year_zero=True),
             cftime.DatetimeNoLeap(2012, 1, 12, 12, 0, 0, 0, has_year_zero=True),
             cftime.DatetimeNoLeap(2012, 1, 13, 12, 0, 0, 0, has_year_zero=True),
             cftime.DatetimeNoLeap(2012, 1, 14, 12, 0, 0, 0, has_year_zero=True),
             cftime.DatetimeNoLeap(2012, 1, 15, 12, 0, 0, 0, has_year_zero=True),
             cftime.DatetimeNoLeap(2012, 1, 16, 12, 0, 0, 0, has_year_zero=True),
             cftime.DatetimeNoLeap(2012, 1, 17, 12, 0, 0, 0, has_year_zero=True),
             cftime.DatetimeNoLeap(2012, 1, 18, 12, 0, 0, 0, has_year_zero=True),
             cftime.DatetimeNoLeap(2012, 1, 19, 12, 0, 0, 0, has_year_zero=True),
             cftime.DatetimeNoLeap(2012, 1, 20, 12, 0, 0, 0, has_year_zero=True),
             cftime.DatetimeNoLeap(2012, 1, 21, 12, 0, 0, 0, has_year_zero=True),
             cftime.DatetimeNoLeap(2012, 1, 22, 12, 0, 0, 0, has_year_zero=True),
             cftime.DatetimeNoLeap(2012, 1, 23, 12, 0, 0, 0, has_year_zero=True),
             cftime.DatetimeNoLeap(2012, 1, 24, 12, 0, 0, 0, has_year_zero=True),
             cftime.DatetimeNoLeap(2012, 1, 25, 12, 0, 0, 0, has_year_zero=True),
             cftime.DatetimeNoLeap(2012, 1, 26, 12, 0, 0, 0, has_year_zero=True),
             cftime.DatetimeNoLeap(2012, 1, 27, 12, 0, 0, 0, has_year_zero=True),
             cftime.DatetimeNoLeap(2012, 1, 28, 12, 0, 0, 0, has_year_zero=True),
             cftime.DatetimeNoLeap(2012, 1, 29, 12, 0, 0, 0, has_year_zero=True),
             cftime.DatetimeNoLeap(2012, 1, 30, 12, 0, 0, 0, has_year_zero=True),
             cftime.DatetimeNoLeap(2012, 1, 31, 12, 0, 0, 0, has_year_zero=True)],
            dtype=object)
    • y
      ()
      int64
      4967
      array(4967)
    • x
      ()
      int64
      2471
      array(2471)
    • z
      (z)
      int64
      1 2 3 4 5 6 ... 98 99 100 101 102
      array([  1,   2,   3,   4,   5,   6,   7,   8,   9,  10,  11,  12,  13,  14,
              15,  16,  17,  18,  19,  20,  21,  22,  23,  24,  25,  26,  27,  28,
              29,  30,  31,  32,  33,  34,  35,  36,  37,  38,  39,  40,  41,  42,
              43,  44,  45,  46,  47,  48,  49,  50,  51,  52,  53,  54,  55,  56,
              57,  58,  59,  60,  61,  62,  63,  64,  65,  66,  67,  68,  69,  70,
              71,  72,  73,  74,  75,  76,  77,  78,  79,  80,  81,  82,  83,  84,
              85,  86,  87,  88,  89,  90,  91,  92,  93,  94,  95,  96,  97,  98,
              99, 100, 101, 102])
    • mask2d
      ()
      bool
      dask.array<chunksize=(), meta=np.ndarray>
      Array Chunk
      Bytes 1 B 1 B
      Shape () ()
      Count 1743 Tasks 1 Chunks
      Type bool numpy.ndarray
    • depth
      (z)
      float32
      dask.array<chunksize=(102,), meta=np.ndarray>
      Array Chunk
      Bytes 408 B 408 B
      Shape (102,) (102,)
      Count 1744 Tasks 1 Chunks
      Type float32 numpy.ndarray
      102 1
    • nav_lon
      ()
      float32
      dask.array<chunksize=(), meta=np.ndarray>
      Array Chunk
      Bytes 4 B 4 B
      Shape () ()
      Count 1743 Tasks 1 Chunks
      Type float32 numpy.ndarray
    • nav_lat
      ()
      float32
      dask.array<chunksize=(), meta=np.ndarray>
      Array Chunk
      Bytes 4 B 4 B
      Shape () ()
      Count 1743 Tasks 1 Chunks
      Type float32 numpy.ndarray
    • mask
      (z)
      bool
      dask.array<chunksize=(102,), meta=np.ndarray>
      Array Chunk
      Bytes 102 B 102 B
      Shape (102,) (102,)
      Count 1744 Tasks 1 Chunks
      Type bool numpy.ndarray
      102 1
    • vosaline
      (t, z)
      float32
      dask.array<chunksize=(1, 102), meta=np.ndarray>
      cell_methods :
      time: mean (interval: 40 s)
      interval_operation :
      40 s
      interval_write :
      1 d
      long_name :
      salinity
      online_operation :
      average
      standard_name :
      sea_water_practical_salinity
      units :
      1e-3
      Array Chunk
      Bytes 12.35 kiB 408 B
      Shape (31, 102) (1, 102)
      Count 425 Tasks 31 Chunks
      Type float32 numpy.ndarray
      102 31
    • votemper
      (t, z)
      float32
      dask.array<chunksize=(1, 102), meta=np.ndarray>
      cell_methods :
      time: mean (interval: 40 s)
      interval_operation :
      40 s
      interval_write :
      1 d
      long_name :
      temperature
      online_operation :
      average
      standard_name :
      sea_water_potential_temperature
      units :
      degC
      Array Chunk
      Bytes 12.35 kiB 408 B
      Shape (31, 102) (1, 102)
      Count 425 Tasks 31 Chunks
      Type float32 numpy.ndarray
      102 31
  • CASE :
    DELTA
    CONFIG :
    SEDNA
    Conventions :
    CF-1.6
    DOMAIN_dimensions_ids :
    [2, 3]
    DOMAIN_halo_size_end :
    [0, 0]
    DOMAIN_halo_size_start :
    [0, 0]
    DOMAIN_number :
    0
    DOMAIN_number_total :
    544
    DOMAIN_position_first :
    [1, 1]
    DOMAIN_position_last :
    [6560, 13]
    DOMAIN_size_global :
    [6560, 6540]
    DOMAIN_size_local :
    [6560, 13]
    DOMAIN_type :
    box
    NCO :
    netCDF Operators version 4.9.1 (Homepage = http://nco.sf.net, Code = http://github.com/nco/nco)
    description :
    ocean T grid variables
    history :
    Tue Jan 18 17:23:11 2022: ncks -4 -L 1 SEDNA-DELTA_1d_gridS_201201-201201_NOZIP_0000.nc /ccc/scratch/cont003/gen7420/talandel/SEDNA/SEDNA-DELTA-S/SPLIT/1d/2012/01/SEDNA-DELTA_1d_gridS_201201-201201_0000.nc Tue Jan 18 17:22:45 2022: ncrcat -n 31,2,1 SEDNA-DELTA_1d_gridS_0000_01.nc SEDNA-DELTA_1d_gridS_201201-201201_NOZIP_0000.nc
    ibegin :
    0
    jbegin :
    0
    name :
    /ccc/scratch/cont003/ra5563/talandel/ONGOING-RUNS/SEDNA-DELTA-XIOS.46/SEDNA-DELTA_1d_gridS
    ni :
    6560
    nj :
    13
    output_frequency :
    1d
    start_date :
    20090101
    timeStamp :
    2022-Jan-17 19:00:16 GMT
    title :
    ocean T grid variables
    uuid :
    d8db76f6-a436-451a-9ab1-72dc892753af
#4 Saving  SEDNA_Mooring_Arc_B_Mooring_Arc_B
data=save.datas(data,plot=Plot,path=nc_outputpath,filename=filename)
start saving data
saving data in a  csv file ../nc_results/SEDNA_DELTA_MONITOR/SEDNA_Mooring_Arc_B_Mooring_Arc_B2012-01-01_2012-01-31.nc
save computed data at ../nc_results/SEDNA_DELTA_MONITOR/SEDNA_Mooring_Arc_B_Mooring_Arc_B2012-01-01_2012-01-31.nc completed
Value='Mooring_Eur_B'
Zone='Eur_B'
Plot='Mooring'
cmap='rainbow'
clabel='None'
clim= {'vosaline': (32.0, 35.0), 'votemper': (-2.0, 3.0)}
outputpath='../results/SEDNA_DELTA_MONITOR/'
nc_outputpath='../nc_results/SEDNA_DELTA_MONITOR/'
filename='SEDNA_Mooring_Eur_B_Mooring_Eur_B'
data=monitor.optimize_dataset(data)
#2 Zooming Data
data= zoom.Eur_B(data)
data=monitor.optimize_dataset(data)
<xarray.Dataset>
Dimensions:        (t: 31, z: 102)
Coordinates:
    time_centered  (t) object dask.array<chunksize=(1,), meta=np.ndarray>
  * t              (t) object 2012-01-01 12:00:00 ... 2012-01-31 12:00:00
    y              int64 3621
    x              int64 2495
  * z              (z) int64 1 2 3 4 5 6 7 8 9 ... 94 95 96 97 98 99 100 101 102
    mask2d         bool dask.array<chunksize=(), meta=np.ndarray>
    depth          (z) float32 dask.array<chunksize=(102,), meta=np.ndarray>
    nav_lon        float32 dask.array<chunksize=(), meta=np.ndarray>
    nav_lat        float32 dask.array<chunksize=(), meta=np.ndarray>
    mask           (z) bool dask.array<chunksize=(102,), meta=np.ndarray>
Data variables:
    vosaline       (t, z) float32 dask.array<chunksize=(1, 102), meta=np.ndarray>
    votemper       (t, z) float32 dask.array<chunksize=(1, 102), meta=np.ndarray>
Attributes: (12/26)
    CASE:                    DELTA
    CONFIG:                  SEDNA
    Conventions:             CF-1.6
    DOMAIN_dimensions_ids:   [2, 3]
    DOMAIN_halo_size_end:    [0, 0]
    DOMAIN_halo_size_start:  [0, 0]
    ...                      ...
    nj:                      13
    output_frequency:        1d
    start_date:              20090101
    timeStamp:               2022-Jan-17 19:00:16 GMT
    title:                   ocean T grid variables
    uuid:                    d8db76f6-a436-451a-9ab1-72dc892753af
xarray.Dataset
    • t: 31
    • z: 102
    • time_centered
      (t)
      object
      dask.array<chunksize=(1,), meta=np.ndarray>
      bounds :
      time_centered_bounds
      long_name :
      Time axis
      standard_name :
      time
      time_origin :
      1900-01-01 00:00:00
      Array Chunk
      Bytes 248 B 8 B
      Shape (31,) (1,)
      Count 189 Tasks 31 Chunks
      Type object numpy.ndarray
      31 1
    • t
      (t)
      object
      2012-01-01 12:00:00 ... 2012-01-...
      axis :
      T
      bounds :
      time_counter_bounds
      long_name :
      Time axis
      standard_name :
      time
      time_origin :
      1900-01-01 00:00:00
      array([cftime.DatetimeNoLeap(2012, 1, 1, 12, 0, 0, 0, has_year_zero=True),
             cftime.DatetimeNoLeap(2012, 1, 2, 12, 0, 0, 0, has_year_zero=True),
             cftime.DatetimeNoLeap(2012, 1, 3, 12, 0, 0, 0, has_year_zero=True),
             cftime.DatetimeNoLeap(2012, 1, 4, 12, 0, 0, 0, has_year_zero=True),
             cftime.DatetimeNoLeap(2012, 1, 5, 12, 0, 0, 0, has_year_zero=True),
             cftime.DatetimeNoLeap(2012, 1, 6, 12, 0, 0, 0, has_year_zero=True),
             cftime.DatetimeNoLeap(2012, 1, 7, 12, 0, 0, 0, has_year_zero=True),
             cftime.DatetimeNoLeap(2012, 1, 8, 12, 0, 0, 0, has_year_zero=True),
             cftime.DatetimeNoLeap(2012, 1, 9, 12, 0, 0, 0, has_year_zero=True),
             cftime.DatetimeNoLeap(2012, 1, 10, 12, 0, 0, 0, has_year_zero=True),
             cftime.DatetimeNoLeap(2012, 1, 11, 12, 0, 0, 0, has_year_zero=True),
             cftime.DatetimeNoLeap(2012, 1, 12, 12, 0, 0, 0, has_year_zero=True),
             cftime.DatetimeNoLeap(2012, 1, 13, 12, 0, 0, 0, has_year_zero=True),
             cftime.DatetimeNoLeap(2012, 1, 14, 12, 0, 0, 0, has_year_zero=True),
             cftime.DatetimeNoLeap(2012, 1, 15, 12, 0, 0, 0, has_year_zero=True),
             cftime.DatetimeNoLeap(2012, 1, 16, 12, 0, 0, 0, has_year_zero=True),
             cftime.DatetimeNoLeap(2012, 1, 17, 12, 0, 0, 0, has_year_zero=True),
             cftime.DatetimeNoLeap(2012, 1, 18, 12, 0, 0, 0, has_year_zero=True),
             cftime.DatetimeNoLeap(2012, 1, 19, 12, 0, 0, 0, has_year_zero=True),
             cftime.DatetimeNoLeap(2012, 1, 20, 12, 0, 0, 0, has_year_zero=True),
             cftime.DatetimeNoLeap(2012, 1, 21, 12, 0, 0, 0, has_year_zero=True),
             cftime.DatetimeNoLeap(2012, 1, 22, 12, 0, 0, 0, has_year_zero=True),
             cftime.DatetimeNoLeap(2012, 1, 23, 12, 0, 0, 0, has_year_zero=True),
             cftime.DatetimeNoLeap(2012, 1, 24, 12, 0, 0, 0, has_year_zero=True),
             cftime.DatetimeNoLeap(2012, 1, 25, 12, 0, 0, 0, has_year_zero=True),
             cftime.DatetimeNoLeap(2012, 1, 26, 12, 0, 0, 0, has_year_zero=True),
             cftime.DatetimeNoLeap(2012, 1, 27, 12, 0, 0, 0, has_year_zero=True),
             cftime.DatetimeNoLeap(2012, 1, 28, 12, 0, 0, 0, has_year_zero=True),
             cftime.DatetimeNoLeap(2012, 1, 29, 12, 0, 0, 0, has_year_zero=True),
             cftime.DatetimeNoLeap(2012, 1, 30, 12, 0, 0, 0, has_year_zero=True),
             cftime.DatetimeNoLeap(2012, 1, 31, 12, 0, 0, 0, has_year_zero=True)],
            dtype=object)
    • y
      ()
      int64
      3621
      array(3621)
    • x
      ()
      int64
      2495
      array(2495)
    • z
      (z)
      int64
      1 2 3 4 5 6 ... 98 99 100 101 102
      array([  1,   2,   3,   4,   5,   6,   7,   8,   9,  10,  11,  12,  13,  14,
              15,  16,  17,  18,  19,  20,  21,  22,  23,  24,  25,  26,  27,  28,
              29,  30,  31,  32,  33,  34,  35,  36,  37,  38,  39,  40,  41,  42,
              43,  44,  45,  46,  47,  48,  49,  50,  51,  52,  53,  54,  55,  56,
              57,  58,  59,  60,  61,  62,  63,  64,  65,  66,  67,  68,  69,  70,
              71,  72,  73,  74,  75,  76,  77,  78,  79,  80,  81,  82,  83,  84,
              85,  86,  87,  88,  89,  90,  91,  92,  93,  94,  95,  96,  97,  98,
              99, 100, 101, 102])
    • mask2d
      ()
      bool
      dask.array<chunksize=(), meta=np.ndarray>
      Array Chunk
      Bytes 1 B 1 B
      Shape () ()
      Count 1743 Tasks 1 Chunks
      Type bool numpy.ndarray
    • depth
      (z)
      float32
      dask.array<chunksize=(102,), meta=np.ndarray>
      Array Chunk
      Bytes 408 B 408 B
      Shape (102,) (102,)
      Count 1744 Tasks 1 Chunks
      Type float32 numpy.ndarray
      102 1
    • nav_lon
      ()
      float32
      dask.array<chunksize=(), meta=np.ndarray>
      Array Chunk
      Bytes 4 B 4 B
      Shape () ()
      Count 1743 Tasks 1 Chunks
      Type float32 numpy.ndarray
    • nav_lat
      ()
      float32
      dask.array<chunksize=(), meta=np.ndarray>
      Array Chunk
      Bytes 4 B 4 B
      Shape () ()
      Count 1743 Tasks 1 Chunks
      Type float32 numpy.ndarray
    • mask
      (z)
      bool
      dask.array<chunksize=(102,), meta=np.ndarray>
      Array Chunk
      Bytes 102 B 102 B
      Shape (102,) (102,)
      Count 1744 Tasks 1 Chunks
      Type bool numpy.ndarray
      102 1
    • vosaline
      (t, z)
      float32
      dask.array<chunksize=(1, 102), meta=np.ndarray>
      cell_methods :
      time: mean (interval: 40 s)
      interval_operation :
      40 s
      interval_write :
      1 d
      long_name :
      salinity
      online_operation :
      average
      standard_name :
      sea_water_practical_salinity
      units :
      1e-3
      Array Chunk
      Bytes 12.35 kiB 408 B
      Shape (31, 102) (1, 102)
      Count 425 Tasks 31 Chunks
      Type float32 numpy.ndarray
      102 31
    • votemper
      (t, z)
      float32
      dask.array<chunksize=(1, 102), meta=np.ndarray>
      cell_methods :
      time: mean (interval: 40 s)
      interval_operation :
      40 s
      interval_write :
      1 d
      long_name :
      temperature
      online_operation :
      average
      standard_name :
      sea_water_potential_temperature
      units :
      degC
      Array Chunk
      Bytes 12.35 kiB 408 B
      Shape (31, 102) (1, 102)
      Count 425 Tasks 31 Chunks
      Type float32 numpy.ndarray
      102 31
  • CASE :
    DELTA
    CONFIG :
    SEDNA
    Conventions :
    CF-1.6
    DOMAIN_dimensions_ids :
    [2, 3]
    DOMAIN_halo_size_end :
    [0, 0]
    DOMAIN_halo_size_start :
    [0, 0]
    DOMAIN_number :
    0
    DOMAIN_number_total :
    544
    DOMAIN_position_first :
    [1, 1]
    DOMAIN_position_last :
    [6560, 13]
    DOMAIN_size_global :
    [6560, 6540]
    DOMAIN_size_local :
    [6560, 13]
    DOMAIN_type :
    box
    NCO :
    netCDF Operators version 4.9.1 (Homepage = http://nco.sf.net, Code = http://github.com/nco/nco)
    description :
    ocean T grid variables
    history :
    Tue Jan 18 17:23:11 2022: ncks -4 -L 1 SEDNA-DELTA_1d_gridS_201201-201201_NOZIP_0000.nc /ccc/scratch/cont003/gen7420/talandel/SEDNA/SEDNA-DELTA-S/SPLIT/1d/2012/01/SEDNA-DELTA_1d_gridS_201201-201201_0000.nc Tue Jan 18 17:22:45 2022: ncrcat -n 31,2,1 SEDNA-DELTA_1d_gridS_0000_01.nc SEDNA-DELTA_1d_gridS_201201-201201_NOZIP_0000.nc
    ibegin :
    0
    jbegin :
    0
    name :
    /ccc/scratch/cont003/ra5563/talandel/ONGOING-RUNS/SEDNA-DELTA-XIOS.46/SEDNA-DELTA_1d_gridS
    ni :
    6560
    nj :
    13
    output_frequency :
    1d
    start_date :
    20090101
    timeStamp :
    2022-Jan-17 19:00:16 GMT
    title :
    ocean T grid variables
    uuid :
    d8db76f6-a436-451a-9ab1-72dc892753af
#3 Start computing 
data= data
monitor.optimize_dataset(data)
add optimise here once otimise can recognise
<xarray.Dataset>
Dimensions:        (t: 31, z: 102)
Coordinates:
    time_centered  (t) object dask.array<chunksize=(1,), meta=np.ndarray>
  * t              (t) object 2012-01-01 12:00:00 ... 2012-01-31 12:00:00
    y              int64 3621
    x              int64 2495
  * z              (z) int64 1 2 3 4 5 6 7 8 9 ... 94 95 96 97 98 99 100 101 102
    mask2d         bool dask.array<chunksize=(), meta=np.ndarray>
    depth          (z) float32 dask.array<chunksize=(102,), meta=np.ndarray>
    nav_lon        float32 dask.array<chunksize=(), meta=np.ndarray>
    nav_lat        float32 dask.array<chunksize=(), meta=np.ndarray>
    mask           (z) bool dask.array<chunksize=(102,), meta=np.ndarray>
Data variables:
    vosaline       (t, z) float32 dask.array<chunksize=(1, 102), meta=np.ndarray>
    votemper       (t, z) float32 dask.array<chunksize=(1, 102), meta=np.ndarray>
Attributes: (12/26)
    CASE:                    DELTA
    CONFIG:                  SEDNA
    Conventions:             CF-1.6
    DOMAIN_dimensions_ids:   [2, 3]
    DOMAIN_halo_size_end:    [0, 0]
    DOMAIN_halo_size_start:  [0, 0]
    ...                      ...
    nj:                      13
    output_frequency:        1d
    start_date:              20090101
    timeStamp:               2022-Jan-17 19:00:16 GMT
    title:                   ocean T grid variables
    uuid:                    d8db76f6-a436-451a-9ab1-72dc892753af
xarray.Dataset
    • t: 31
    • z: 102
    • time_centered
      (t)
      object
      dask.array<chunksize=(1,), meta=np.ndarray>
      bounds :
      time_centered_bounds
      long_name :
      Time axis
      standard_name :
      time
      time_origin :
      1900-01-01 00:00:00
      Array Chunk
      Bytes 248 B 8 B
      Shape (31,) (1,)
      Count 189 Tasks 31 Chunks
      Type object numpy.ndarray
      31 1
    • t
      (t)
      object
      2012-01-01 12:00:00 ... 2012-01-...
      axis :
      T
      bounds :
      time_counter_bounds
      long_name :
      Time axis
      standard_name :
      time
      time_origin :
      1900-01-01 00:00:00
      array([cftime.DatetimeNoLeap(2012, 1, 1, 12, 0, 0, 0, has_year_zero=True),
             cftime.DatetimeNoLeap(2012, 1, 2, 12, 0, 0, 0, has_year_zero=True),
             cftime.DatetimeNoLeap(2012, 1, 3, 12, 0, 0, 0, has_year_zero=True),
             cftime.DatetimeNoLeap(2012, 1, 4, 12, 0, 0, 0, has_year_zero=True),
             cftime.DatetimeNoLeap(2012, 1, 5, 12, 0, 0, 0, has_year_zero=True),
             cftime.DatetimeNoLeap(2012, 1, 6, 12, 0, 0, 0, has_year_zero=True),
             cftime.DatetimeNoLeap(2012, 1, 7, 12, 0, 0, 0, has_year_zero=True),
             cftime.DatetimeNoLeap(2012, 1, 8, 12, 0, 0, 0, has_year_zero=True),
             cftime.DatetimeNoLeap(2012, 1, 9, 12, 0, 0, 0, has_year_zero=True),
             cftime.DatetimeNoLeap(2012, 1, 10, 12, 0, 0, 0, has_year_zero=True),
             cftime.DatetimeNoLeap(2012, 1, 11, 12, 0, 0, 0, has_year_zero=True),
             cftime.DatetimeNoLeap(2012, 1, 12, 12, 0, 0, 0, has_year_zero=True),
             cftime.DatetimeNoLeap(2012, 1, 13, 12, 0, 0, 0, has_year_zero=True),
             cftime.DatetimeNoLeap(2012, 1, 14, 12, 0, 0, 0, has_year_zero=True),
             cftime.DatetimeNoLeap(2012, 1, 15, 12, 0, 0, 0, has_year_zero=True),
             cftime.DatetimeNoLeap(2012, 1, 16, 12, 0, 0, 0, has_year_zero=True),
             cftime.DatetimeNoLeap(2012, 1, 17, 12, 0, 0, 0, has_year_zero=True),
             cftime.DatetimeNoLeap(2012, 1, 18, 12, 0, 0, 0, has_year_zero=True),
             cftime.DatetimeNoLeap(2012, 1, 19, 12, 0, 0, 0, has_year_zero=True),
             cftime.DatetimeNoLeap(2012, 1, 20, 12, 0, 0, 0, has_year_zero=True),
             cftime.DatetimeNoLeap(2012, 1, 21, 12, 0, 0, 0, has_year_zero=True),
             cftime.DatetimeNoLeap(2012, 1, 22, 12, 0, 0, 0, has_year_zero=True),
             cftime.DatetimeNoLeap(2012, 1, 23, 12, 0, 0, 0, has_year_zero=True),
             cftime.DatetimeNoLeap(2012, 1, 24, 12, 0, 0, 0, has_year_zero=True),
             cftime.DatetimeNoLeap(2012, 1, 25, 12, 0, 0, 0, has_year_zero=True),
             cftime.DatetimeNoLeap(2012, 1, 26, 12, 0, 0, 0, has_year_zero=True),
             cftime.DatetimeNoLeap(2012, 1, 27, 12, 0, 0, 0, has_year_zero=True),
             cftime.DatetimeNoLeap(2012, 1, 28, 12, 0, 0, 0, has_year_zero=True),
             cftime.DatetimeNoLeap(2012, 1, 29, 12, 0, 0, 0, has_year_zero=True),
             cftime.DatetimeNoLeap(2012, 1, 30, 12, 0, 0, 0, has_year_zero=True),
             cftime.DatetimeNoLeap(2012, 1, 31, 12, 0, 0, 0, has_year_zero=True)],
            dtype=object)
    • y
      ()
      int64
      3621
      array(3621)
    • x
      ()
      int64
      2495
      array(2495)
    • z
      (z)
      int64
      1 2 3 4 5 6 ... 98 99 100 101 102
      array([  1,   2,   3,   4,   5,   6,   7,   8,   9,  10,  11,  12,  13,  14,
              15,  16,  17,  18,  19,  20,  21,  22,  23,  24,  25,  26,  27,  28,
              29,  30,  31,  32,  33,  34,  35,  36,  37,  38,  39,  40,  41,  42,
              43,  44,  45,  46,  47,  48,  49,  50,  51,  52,  53,  54,  55,  56,
              57,  58,  59,  60,  61,  62,  63,  64,  65,  66,  67,  68,  69,  70,
              71,  72,  73,  74,  75,  76,  77,  78,  79,  80,  81,  82,  83,  84,
              85,  86,  87,  88,  89,  90,  91,  92,  93,  94,  95,  96,  97,  98,
              99, 100, 101, 102])
    • mask2d
      ()
      bool
      dask.array<chunksize=(), meta=np.ndarray>
      Array Chunk
      Bytes 1 B 1 B
      Shape () ()
      Count 1743 Tasks 1 Chunks
      Type bool numpy.ndarray
    • depth
      (z)
      float32
      dask.array<chunksize=(102,), meta=np.ndarray>
      Array Chunk
      Bytes 408 B 408 B
      Shape (102,) (102,)
      Count 1744 Tasks 1 Chunks
      Type float32 numpy.ndarray
      102 1
    • nav_lon
      ()
      float32
      dask.array<chunksize=(), meta=np.ndarray>
      Array Chunk
      Bytes 4 B 4 B
      Shape () ()
      Count 1743 Tasks 1 Chunks
      Type float32 numpy.ndarray
    • nav_lat
      ()
      float32
      dask.array<chunksize=(), meta=np.ndarray>
      Array Chunk
      Bytes 4 B 4 B
      Shape () ()
      Count 1743 Tasks 1 Chunks
      Type float32 numpy.ndarray
    • mask
      (z)
      bool
      dask.array<chunksize=(102,), meta=np.ndarray>
      Array Chunk
      Bytes 102 B 102 B
      Shape (102,) (102,)
      Count 1744 Tasks 1 Chunks
      Type bool numpy.ndarray
      102 1
    • vosaline
      (t, z)
      float32
      dask.array<chunksize=(1, 102), meta=np.ndarray>
      cell_methods :
      time: mean (interval: 40 s)
      interval_operation :
      40 s
      interval_write :
      1 d
      long_name :
      salinity
      online_operation :
      average
      standard_name :
      sea_water_practical_salinity
      units :
      1e-3
      Array Chunk
      Bytes 12.35 kiB 408 B
      Shape (31, 102) (1, 102)
      Count 425 Tasks 31 Chunks
      Type float32 numpy.ndarray
      102 31
    • votemper
      (t, z)
      float32
      dask.array<chunksize=(1, 102), meta=np.ndarray>
      cell_methods :
      time: mean (interval: 40 s)
      interval_operation :
      40 s
      interval_write :
      1 d
      long_name :
      temperature
      online_operation :
      average
      standard_name :
      sea_water_potential_temperature
      units :
      degC
      Array Chunk
      Bytes 12.35 kiB 408 B
      Shape (31, 102) (1, 102)
      Count 425 Tasks 31 Chunks
      Type float32 numpy.ndarray
      102 31
  • CASE :
    DELTA
    CONFIG :
    SEDNA
    Conventions :
    CF-1.6
    DOMAIN_dimensions_ids :
    [2, 3]
    DOMAIN_halo_size_end :
    [0, 0]
    DOMAIN_halo_size_start :
    [0, 0]
    DOMAIN_number :
    0
    DOMAIN_number_total :
    544
    DOMAIN_position_first :
    [1, 1]
    DOMAIN_position_last :
    [6560, 13]
    DOMAIN_size_global :
    [6560, 6540]
    DOMAIN_size_local :
    [6560, 13]
    DOMAIN_type :
    box
    NCO :
    netCDF Operators version 4.9.1 (Homepage = http://nco.sf.net, Code = http://github.com/nco/nco)
    description :
    ocean T grid variables
    history :
    Tue Jan 18 17:23:11 2022: ncks -4 -L 1 SEDNA-DELTA_1d_gridS_201201-201201_NOZIP_0000.nc /ccc/scratch/cont003/gen7420/talandel/SEDNA/SEDNA-DELTA-S/SPLIT/1d/2012/01/SEDNA-DELTA_1d_gridS_201201-201201_0000.nc Tue Jan 18 17:22:45 2022: ncrcat -n 31,2,1 SEDNA-DELTA_1d_gridS_0000_01.nc SEDNA-DELTA_1d_gridS_201201-201201_NOZIP_0000.nc
    ibegin :
    0
    jbegin :
    0
    name :
    /ccc/scratch/cont003/ra5563/talandel/ONGOING-RUNS/SEDNA-DELTA-XIOS.46/SEDNA-DELTA_1d_gridS
    ni :
    6560
    nj :
    13
    output_frequency :
    1d
    start_date :
    20090101
    timeStamp :
    2022-Jan-17 19:00:16 GMT
    title :
    ocean T grid variables
    uuid :
    d8db76f6-a436-451a-9ab1-72dc892753af
#4 Saving  SEDNA_Mooring_Eur_B_Mooring_Eur_B
data=save.datas(data,plot=Plot,path=nc_outputpath,filename=filename)
start saving data
saving data in a  csv file ../nc_results/SEDNA_DELTA_MONITOR/SEDNA_Mooring_Eur_B_Mooring_Eur_B2012-01-01_2012-01-31.nc
save computed data at ../nc_results/SEDNA_DELTA_MONITOR/SEDNA_Mooring_Eur_B_Mooring_Eur_B2012-01-01_2012-01-31.nc completed
CPU times: user 13.8 s, sys: 2.52 s, total: 16.3 s
Wall time: 26.8 s