%matplotlib inline
import pandas as pd
import socket
host = socket.getfqdn()
from core import load, zoom, calc, save,plots,monitor
#reload funcs after updating ./core/*.py
import importlib
importlib.reload(load)
importlib.reload(zoom)
importlib.reload(calc)
importlib.reload(save)
importlib.reload(plots)
importlib.reload(monitor)
<module 'core.monitor' from '/ccc/work/cont003/gen7420/odakatin/monitor-sedna/notebook/core/monitor.py'>
# 'catalog_url': we chose intake catalog for reading.
# 'month': = 'JOBID' almost month but not really,
# 'savefig': Do we save output in html? or not.
# 'file_exp': Which 'experiment' name is it?
#. this corresopnds to catalog name without path and .yaml
# If you submit the job with job scheduler, above
# 4 valus can be passed as enviroment variable.
# local : if True run dask local cluster, if not true, put number of workers
# setted in the 'local'
# if no 'local ' given, local will be setted automatically to 'True'
# %env local='2"
#%env ychunk='2'
#%env tchunk='2'
#%env local='True'
#local=os.environ.get('local',"True" )
#if ('True' in local): print(local)
%%time
savefig=True
client,cluster,control,catalog_url,month,year,daskreport,outputpath = load.set_control(host)
!mkdir -p $outputpath
!mkdir -p $daskreport
client
local True using host= irene5500.c-irene.mg1.tgcc.ccc.cea.fr starting dask cluster on local= True workers 16 10000000000 False not local in tgcc rome local cluster starting This code is running on irene5500.c-irene.mg1.tgcc.ccc.cea.fr using SEDNA_ALPHA_MONITOR file experiment, read from ../lib/SEDNA_ALPHA_MONITOR.yaml on year= * on month= 22 outputpath= ../results/rome_SEDNA_ALPHA_MONITOR/22/ daskreport= ../results/dask/2459381irene5500.c-irene.mg1.tgcc.ccc.cea.fr_SEDNA_ALPHA_MONITOR_22compute/ CPU times: user 340 ms, sys: 239 ms, total: 579 ms Wall time: 9.28 s
Client
|
Cluster
|
df=load.controlfile(control)
#
#df=df[~df.duplicated(subset='Plot' )]
df=df[df['Plot'] == 'AWTD_map']
#df=df[3:4]
df
Value | Inputs | Equation | Zone | Plot | Colourmap | MinMax | Unit | Oldname | Unnamed: 10 | |
---|---|---|---|---|---|---|---|---|---|---|
AW_maxtemp_depth | gridT.votemper,gridS.vosaline,param.mask,param... | calc.AWTD4(data) | ALL | AWTD_map | jet | (0,800) | m | M-5 |
Each computation consists of
%%time
#todo add 'year' here.
data=load.datas(catalog_url,df.Inputs,month,year,daskreport)
print('#1 Data: created:')
print('# if we raed too much file, we can do sel to take out some datess..')
data
../lib/SEDNA_ALPHA_MONITOR.yaml using param_xios reading ../lib/SEDNA_ALPHA_MONITOR.yaml using param_xios reading <bound method DataSourceBase.describe of sources: param_xios: args: combine: by_coords concat_dim: y urlpath: /ccc/work/cont003/gen7420/odakatin/CONFIGS/SEDNA/SEDNA-I/SEDNA_Domain_cfg_Tgt_20210423_tsh10m_L1/param/x_*.nc xarray_kwargs: compat: override coords: minimal data_vars: minimal parallel: true description: SEDNA NEMO parameters from MPI output nav_lon lat fails driver: intake_xarray.netcdf.NetCDFSource metadata: catalog_dir: /ccc/work/cont003/gen7420/odakatin/monitor-sedna/notebook/../lib/ > {'name': 'param_xios', 'container': 'xarray', 'plugin': ['netcdf'], 'driver': ['netcdf'], 'description': 'SEDNA NEMO parameters from MPI output nav_lon lat fails', 'direct_access': 'forbid', 'user_parameters': [{'name': 'path', 'description': 'file coordinate', 'type': 'str', 'default': '/ccc/work/cont003/gen7420/odakatin/CONFIGS/SEDNA/MESH/SEDNA_mesh_mask_Tgt_20210423_tsh10m_L1/param'}], 'metadata': {}, 'args': {'urlpath': '/ccc/work/cont003/gen7420/odakatin/CONFIGS/SEDNA/SEDNA-I/SEDNA_Domain_cfg_Tgt_20210423_tsh10m_L1/param/x_*.nc', 'combine': 'by_coords', 'concat_dim': 'y'}} 0 read gridS ['vosaline'] using load_data_xios reading gridS using load_data_xios reading <bound method DataSourceBase.describe of sources: data_xios: args: combine: by_coords concat_dim: time_counter,x,y urlpath: /ccc/scratch/cont003/gen7420/talandel/ONGOING-RUNS/SEDNA-ALPHA-XIOS.22/SEDNA-ALPHA_1d_gridS_*_0[0-5][0-9][0-9].nc xarray_kwargs: compat: override coords: minimal data_vars: minimal drop_variables: !!set deptht_bounds: null depthu_bounds: null nav_lat: null nav_lon: null time_centerd: null time_centered_bounds: null time_counter_bounds: null parallel: true preprocess: !!python/name:core.load.prep '' description: SEDNA NEMO outputs from different xios server driver: intake_xarray.netcdf.NetCDFSource metadata: catalog_dir: /ccc/work/cont003/gen7420/odakatin/monitor-sedna/notebook/../lib/ > took 152.70950865745544 seconds 0 merging gridS ['vosaline'] 1 read gridT ['votemper'] using load_data_xios reading gridT using load_data_xios reading <bound method DataSourceBase.describe of sources: data_xios: args: combine: by_coords concat_dim: time_counter,x,y urlpath: /ccc/scratch/cont003/gen7420/talandel/ONGOING-RUNS/SEDNA-ALPHA-XIOS.22/SEDNA-ALPHA_1d_gridT_*_0[0-5][0-9][0-9].nc xarray_kwargs: compat: override coords: minimal data_vars: minimal drop_variables: !!set deptht_bounds: null depthu_bounds: null nav_lat: null nav_lon: null time_centerd: null time_centered_bounds: null time_counter_bounds: null parallel: true preprocess: !!python/name:core.load.prep '' description: SEDNA NEMO outputs from different xios server driver: intake_xarray.netcdf.NetCDFSource metadata: catalog_dir: /ccc/work/cont003/gen7420/odakatin/monitor-sedna/notebook/../lib/ > took 75.66219639778137 seconds 1 merging gridT ['votemper'] took 0.33994603157043457 seconds param depth will be included in data param mask2d will be included in data param mask will be included in data param nav_lat will be included in data param nav_lon will be included in data sum_num (13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12) start rechunking with (130, 122, 120, 120, 120, 120, 120, 120, 120, 120, 120, 120, 120, 120, 120, 120, 120, 120, 120, 120, 120, 120, 120, 120, 120, 120, 120, 120, 120, 120, 120, 120, 120, 120, 120, 120, 120, 120, 120, 120, 120, 120, 120, 120, 120, 120, 120, 120, 120, 120, 120, 120, 120, 120, 48) end of y_rechunk #1 Data: created: # if we raed too much file, we can do sel to take out some datess.. CPU times: user 1min 40s, sys: 17.5 s, total: 1min 57s Wall time: 4min
<xarray.Dataset> Dimensions: (t: 15, x: 6560, y: 6540, z: 150) Coordinates: * t (t) object 2004-06-16 12:00:00 ... 2004-06-30 12:00:00 * y (y) int64 1 2 3 4 5 6 7 8 ... 6534 6535 6536 6537 6538 6539 6540 * x (x) int64 1 2 3 4 5 6 7 8 ... 6554 6555 6556 6557 6558 6559 6560 * z (z) int64 1 2 3 4 5 6 7 8 9 ... 143 144 145 146 147 148 149 150 depth (z, y, x) float64 dask.array<chunksize=(150, 130, 6560), meta=np.ndarray> mask2d (y, x) bool dask.array<chunksize=(130, 6560), meta=np.ndarray> mask (z, y, x) bool dask.array<chunksize=(150, 130, 6560), meta=np.ndarray> nav_lat (y, x) float32 dask.array<chunksize=(130, 6560), meta=np.ndarray> nav_lon (y, x) float32 dask.array<chunksize=(130, 6560), meta=np.ndarray> Data variables: vosaline (t, z, y, x) float32 dask.array<chunksize=(1, 150, 130, 6560), meta=np.ndarray> votemper (t, z, y, x) float32 dask.array<chunksize=(1, 150, 130, 6560), meta=np.ndarray>
array([cftime.DatetimeNoLeap(2004, 6, 16, 12, 0, 0, 0), cftime.DatetimeNoLeap(2004, 6, 17, 12, 0, 0, 0), cftime.DatetimeNoLeap(2004, 6, 18, 12, 0, 0, 0), cftime.DatetimeNoLeap(2004, 6, 19, 12, 0, 0, 0), cftime.DatetimeNoLeap(2004, 6, 20, 12, 0, 0, 0), cftime.DatetimeNoLeap(2004, 6, 21, 12, 0, 0, 0), cftime.DatetimeNoLeap(2004, 6, 22, 12, 0, 0, 0), cftime.DatetimeNoLeap(2004, 6, 23, 12, 0, 0, 0), cftime.DatetimeNoLeap(2004, 6, 24, 12, 0, 0, 0), cftime.DatetimeNoLeap(2004, 6, 25, 12, 0, 0, 0), cftime.DatetimeNoLeap(2004, 6, 26, 12, 0, 0, 0), cftime.DatetimeNoLeap(2004, 6, 27, 12, 0, 0, 0), cftime.DatetimeNoLeap(2004, 6, 28, 12, 0, 0, 0), cftime.DatetimeNoLeap(2004, 6, 29, 12, 0, 0, 0), cftime.DatetimeNoLeap(2004, 6, 30, 12, 0, 0, 0)], dtype=object)
array([ 1, 2, 3, ..., 6538, 6539, 6540])
array([ 1, 2, 3, ..., 6558, 6559, 6560])
array([ 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 145, 146, 147, 148, 149, 150])
|
|
|
|
|
|
|
%%time
monitor.auto(df,data,savefig,daskreport,outputpath,file_exp='SEDNA'
)
switch:calcswitch,saveswitch,plotswitch True False True dtaa= calc.AWTD4(data) #3 Start computing count: <xarray.Dataset> Dimensions: () Data variables: vosaline int64 dask.array<chunksize=(), meta=np.ndarray> votemper int64 dask.array<chunksize=(), meta=np.ndarray>
<xarray.Dataset> Dimensions: () Data variables: vosaline int64 dask.array<chunksize=(), meta=np.ndarray> votemper int64 dask.array<chunksize=(), meta=np.ndarray>
|
|
nbytes: 8108658520 count: <xarray.Dataset> Dimensions: () Data variables: AWT int64 dask.array<chunksize=(), meta=np.ndarray> AWD int64 dask.array<chunksize=(), meta=np.ndarray>
<xarray.Dataset> Dimensions: (t: 15, x: 6560, y: 6540) Coordinates: * t (t) object 2004-06-16 12:00:00 ... 2004-06-30 12:00:00 * y (y) int64 1 2 3 4 5 6 7 8 ... 6534 6535 6536 6537 6538 6539 6540 * x (x) int64 1 2 3 4 5 6 7 8 ... 6554 6555 6556 6557 6558 6559 6560 mask2d (y, x) bool dask.array<chunksize=(130, 6560), meta=np.ndarray> nav_lat (y, x) float32 dask.array<chunksize=(130, 6560), meta=np.ndarray> nav_lon (y, x) float32 dask.array<chunksize=(130, 6560), meta=np.ndarray> Data variables: AWT (t, y, x) float32 dask.array<chunksize=(1, 130, 6560), meta=np.ndarray> AWD (t, y, x) float64 dask.array<chunksize=(1, 130, 6560), meta=np.ndarray>
array([cftime.DatetimeNoLeap(2004, 6, 16, 12, 0, 0, 0), cftime.DatetimeNoLeap(2004, 6, 17, 12, 0, 0, 0), cftime.DatetimeNoLeap(2004, 6, 18, 12, 0, 0, 0), cftime.DatetimeNoLeap(2004, 6, 19, 12, 0, 0, 0), cftime.DatetimeNoLeap(2004, 6, 20, 12, 0, 0, 0), cftime.DatetimeNoLeap(2004, 6, 21, 12, 0, 0, 0), cftime.DatetimeNoLeap(2004, 6, 22, 12, 0, 0, 0), cftime.DatetimeNoLeap(2004, 6, 23, 12, 0, 0, 0), cftime.DatetimeNoLeap(2004, 6, 24, 12, 0, 0, 0), cftime.DatetimeNoLeap(2004, 6, 25, 12, 0, 0, 0), cftime.DatetimeNoLeap(2004, 6, 26, 12, 0, 0, 0), cftime.DatetimeNoLeap(2004, 6, 27, 12, 0, 0, 0), cftime.DatetimeNoLeap(2004, 6, 28, 12, 0, 0, 0), cftime.DatetimeNoLeap(2004, 6, 29, 12, 0, 0, 0), cftime.DatetimeNoLeap(2004, 6, 30, 12, 0, 0, 0)], dtype=object)
array([ 1, 2, 3, ..., 6538, 6539, 6540])
array([ 1, 2, 3, ..., 6558, 6559, 6560])
|
|
|
|
|
plots.AWTD_map(data,path=outputpath,filename=filename,save=savefig,cmap='jet',clim=(0,800),clabel='m') #5 Plotting SEDNA_AWTD_map_ALL_AW_maxtemp_depth ../results/rome_SEDNA_ALPHA_MONITOR/22/SEDNA_AWTD_map_ALL_AW_maxtemp_depth_20040616-20040630.html starts plotting ../results/rome_SEDNA_ALPHA_MONITOR/22/SEDNA_AWTD_map_ALL_AW_maxtemp_depth_20040616-20040630.html created
CPU times: user 1h 41min 39s, sys: 4min 46s, total: 1h 46min 26s Wall time: 1h 58min 14s